• Title/Summary/Keyword: Time Curve Regression

Search Result 163, Processing Time 0.033 seconds

Development and Validation of Generalized Linear Regression Models to Predict Vessel Enhancement on Coronary CT Angiography

  • Masuda, Takanori;Nakaura, Takeshi;Funama, Yoshinori;Sato, Tomoyasu;Higaki, Toru;Kiguchi, Masao;Matsumoto, Yoriaki;Yamashita, Yukari;Imada, Naoyuki;Awai, Kazuo
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1021-1030
    • /
    • 2018
  • Objective: We evaluated the effect of various patient characteristics and time-density curve (TDC)-factors on the test bolus-affected vessel enhancement on coronary computed tomography angiography (CCTA). We also assessed the value of generalized linear regression models (GLMs) for predicting enhancement on CCTA. Materials and Methods: We performed univariate and multivariate regression analysis to evaluate the effect of patient characteristics and to compare contrast enhancement per gram of iodine on test bolus (${\Delta}HUTEST$) and CCTA (${\Delta}HUCCTA$). We developed GLMs to predict ${\Delta}HUCCTA$. GLMs including independent variables were validated with 6-fold cross-validation using the correlation coefficient and Bland-Altman analysis. Results: In multivariate analysis, only total body weight (TBW) and ${\Delta}HUTEST$ maintained their independent predictive value (p < 0.001). In validation analysis, the highest correlation coefficient between ${\Delta}HUCCTA$ and the prediction values was seen in the GLM (r = 0.75), followed by TDC (r = 0.69) and TBW (r = 0.62). The lowest Bland-Altman limit of agreement was observed with GLM-3 (mean difference, $-0.0{\pm}5.1$ Hounsfield units/grams of iodine [HU/gI]; 95% confidence interval [CI], -10.1, 10.1), followed by ${\Delta}HUCCTA$ ($-0.0{\pm}5.9HU/gI$; 95% CI, -11.9, 11.9) and TBW ($1.1{\pm}6.2HU/gI$; 95% CI, -11.2, 13.4). Conclusion: We demonstrated that the patient's TBW and ${\Delta}HUTEST$ significantly affected contrast enhancement on CCTA images and that the combined use of clinical information and test bolus results is useful for predicting aortic enhancement.

Estimating Design Hour Factor Using Permanent Survey (상시 교통량 자료를 이용한 설계시간계수 추정)

  • Ha, Jung Ah;Kim, Sung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.155-162
    • /
    • 2008
  • This study shows how to estimate the design hour factor when the counting stations don't have all of the hourly volumes such as in a coverage survey. A coverage survey records traffic volume from 1 to 5 times in a year so it lacks the detailed information to calculate the design hour factor. This study used the traffic volumes of permanent surveys to estimate the design hour factor in coverage surveys using correlation and regression analysis. A total 7 independent variables are used : the coefficient of variance of hourly volume, standard deviation of hourly volume, peak hour volume, AADT, heavy traffic volume proprotion, day time traffic volume proportion and D factor. All of variables are plotted on a curve, so it must use non-linear regression to analyze the data. As a result the coefficient of determination and MAE are good at logarith model using AADT.

Assessment of compressive strength of high-performance concrete using soft computing approaches

  • Chukwuemeka Daniel;Jitendra Khatti;Kamaldeep Singh Grover
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.55-75
    • /
    • 2024
  • The present study introduces an optimum performance soft computing model for predicting the compressive strength of high-performance concrete (HPC) by comparing models based on conventional (kernel-based, covariance function-based, and tree-based), advanced machine (least square support vector machine-LSSVM and minimax probability machine regressor-MPMR), and deep (artificial neural network-ANN) learning approaches using a common database for the first time. A compressive strength database, having results of 1030 concrete samples, has been compiled from the literature and preprocessed. For the purpose of training, testing, and validation of soft computing models, 803, 101, and 101 data points have been selected arbitrarily from preprocessed data points, i.e., 1005. Thirteen performance metrics, including three new metrics, i.e., a20-index, index of agreement, and index of scatter, have been implemented for each model. The performance comparison reveals that the SVM (kernel-based), ET (tree-based), MPMR (advanced), and ANN (deep) models have achieved higher performance in predicting the compressive strength of HPC. From the overall analysis of performance, accuracy, Taylor plot, accuracy metric, regression error characteristics curve, Anderson-Darling, Wilcoxon, Uncertainty, and reliability, it has been observed that model CS4 based on the ensemble tree has been recognized as an optimum performance model with higher performance, i.e., a correlation coefficient of 0.9352, root mean square error of 5.76 MPa, and mean absolute error of 4.1069 MPa. The present study also reveals that multicollinearity affects the prediction accuracy of Gaussian process regression, decision tree, multilinear regression, and adaptive boosting regressor models, novel research in compressive strength prediction of HPC. The cosine sensitivity analysis reveals that the prediction of compressive strength of HPC is highly affected by cement content, fine aggregate, coarse aggregate, and water content.

Construction of Delay Predictine Models on Freeway Ramp Junctions with 70mph Speed Limit (70mph 제한속도를 갖는 고속도로 진출입램프 접속부상의 지체예측모형 구축에 관한 연구)

  • 김정훈;김태곤
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.131-140
    • /
    • 1999
  • Today freeway is experiencing a severe congestion with incoming or outgoing traffic through freeway ramps during the peak periods. Thus, the objectives of this study is to identify the traffic characteristics, analyze the relationships between the traffic characteristics and finally construct the delay predictive models on the ramp junctions of freeway with 70mph speed limit. From the traffic analyses, and model constructions and verifications for delay prediction on the ramp junctions of freeway, the following results were obtained: ⅰ) Traffic flow showed a big difference depending on the time periods. Especially, more traffic flows were concentrated on the freeway junctions in the morning peak period when compared with the afternoon peak period. ⅱ) The occupancy also showed a big difference depending on the time periods, and the downstream occupancy(Od) was especially shown to have a higher explanatory power for the delay predictive model construction on the ramp junction of freeway. ⅲ) The speed-occupancy curve showed a remarkable shift based on the occupancies observed ; Od < 9% and Od$\geq$9%. Especially, volume and occupancy were shown to be highly explanatory for delay prediction on the ramp junctions of freeway under Od$\geq$9%, but lowly for delay predicion on the ramp junctions of freeway under Od<9%. Rather, the driver characteristics or transportation conditions around the freeway were through to be a little higher explanatory for the delay perdiction under Od<9%. ⅳ) Integrated delay predictive models showed a higher explanatory power in the morning peak period, but a lower explanatory power in the non-peak periods.

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

Validity of the scoring system for traumatic liver injury: a generalized estimating equation analysis

  • Lee, Kangho;Ryu, Dongyeon;Kim, Hohyun;Jeon, Chang Ho;Kim, Jae Hun;Park, Chan Yong;Yeom, Seok Ran
    • Journal of Trauma and Injury
    • /
    • v.35 no.1
    • /
    • pp.25-33
    • /
    • 2022
  • Purpose: The scoring system for traumatic liver injury (SSTLI) was developed in 2015 to predict mortality in patients with polytraumatic liver injury. This study aimed to validate the SSTLI as a prognostic factor in patients with polytrauma and liver injury through a generalized estimating equation analysis. Methods: The medical records of 521 patients with traumatic liver injury from January 2015 to December 2019 were reviewed. The primary outcome variable was in-hospital mortality. All the risk factors were analyzed using multivariate logistic regression analysis. The SSTLI has five clinical measures (age, Injury Severity Score, serum total bilirubin level, prothrombin time, and creatinine level) chosen based on their predictive power. Each measure is scored as 0-1 (age and Injury Severity Score) or 0-3 (serum total bilirubin level, prothrombin time, and creatinine level). The SSTLI score corresponds to the total points for each item (0-11 points). Results: The areas under the curve of the SSTLI to predict mortality on post-traumatic days 0, 1, 3, and 5 were 0.736, 0.783, 0.830, and 0.824, respectively. A very good to excellent positive correlation was observed between the probability of mortality and the SSTLI score (γ=0.997, P<0.001). A value of 5 points was used as the threshold to distinguish low-risk (<5) from high-risk (≥5) patients. Multivariate analysis using the generalized estimating equation in the logistic regression model indicated that the SSTLI score was an independent predictor of mortality (odds ratio, 1.027; 95% confidence interval, 1.018-1.036; P<0.001). Conclusions: The SSTLI was verified to predict mortality in patients with polytrauma and liver injury. A score of ≥5 on the SSTLI indicated a high-risk of post-traumatic mortality.

Using Continuous Flow Data to Predict the Course of Air Leaks After Lung Lobectomy

  • Jaeshin Yoon;Kwanyong Hyun;Sook Whan Sung
    • Journal of Chest Surgery
    • /
    • v.56 no.3
    • /
    • pp.179-185
    • /
    • 2023
  • Background: Assessments of air leaks are usually performed subjectively, precluding the use of air leaks as an evaluation factor. We aimed to identify objective parameters as predictive factors for prolonged air leak (PAL) and air leak cessation (ALC) from air flow data produced by a digital drainage system. Methods: Flow data records of 352 patients who underwent lung lobectomy were reviewed, and flow data at designated intervals (1, 2, and 3 hours postoperatively [POH] and 3 times a day thereafter [06:00, 13:00, 19:00]) were extracted. ALC was defined by flow less than 20 mL/min over 12 hours, and PAL was defined as ALC after 5 days. Cumulative incidence curves were obtained using Kaplan-Meier estimates of time to ALC. Cox regression analysis was performed to determine the effects of variables on the rate of ALC. Results: The incidence of PAL was 18.2% (64/352). Receiver operating characteristic curve analysis showed cut-off values of 180 mL/min for the flow at 3 POH and 73.3 mL/min for the flow on postoperative day 1; the sensitivity and specificity of these values were 88.9% and 82.5%, respectively. The rates of ALC by Kaplan-Meier analysis were 56.8% at 48 POH and 65.6% at 72 POH. Multivariate Cox regression analysis revealed that the flow at 3 POH (≤80 mL/min), operation time (≤220 minutes), and right middle lobectomy independently predicted ALC. Conclusion: Air flow measured by a digital drainage system is a useful predictor of PAL and ALC and may help optimize the hospital course.

Volume and Mass Doubling Time of Lung Adenocarcinoma according to WHO Histologic Classification

  • Jung Hee Hong;Samina Park;Hyungjin Kim;Jin Mo Goo;In Kyu Park;Chang Hyun Kang;Young Tae Kim;Soon Ho Yoon
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.464-475
    • /
    • 2021
  • Objective: This study aimed to evaluate the tumor doubling time of invasive lung adenocarcinoma according to the International Association of the Study for Lung Cancer (IASLC)/American Thoracic Society (ATS)/European Respiratory Society (ERS) histologic classification. Materials and Methods: Among the 2905 patients with surgically resected lung adenocarcinoma, we retrospectively included 172 patients (mean age, 65.6 ± 9.0 years) who had paired thin-section non-contrast chest computed tomography (CT) scans at least 84 days apart with the same CT parameters, along with 10 patients with squamous cell carcinoma (mean age, 70.9 ± 7.4 years) for comparison. Three-dimensional semiautomatic segmentation of nodules was performed to calculate the volume doubling time (VDT), mass doubling time (MDT), and specific growth rate (SGR) of volume and mass. Multivariate linear regression, one-way analysis of variance, and receiver operating characteristic curve analyses were performed. Results: The median VDT and MDT of lung cancers were as follows: acinar, 603.2 and 639.5 days; lepidic, 1140.6 and 970.1 days; solid/micropapillary, 232.7 and 221.8 days; papillary, 599.0 and 624.3 days; invasive mucinous, 440.7 and 438.2 days; and squamous cell carcinoma, 149.1 and 146.1 days, respectively. The adjusted SGR of volume and mass of the solid-/micropapillary-predominant subtypes were significantly shorter than those of the acinar-, lepidic-, and papillary-predominant subtypes. The histologic subtype was independently associated with tumor doubling time. A VDT of 465.2 days and an MDT of 437.5 days yielded areas under the curve of 0.791 and 0.795, respectively, for distinguishing solid-/micropapillary-predominant subtypes from other subtypes of lung adenocarcinoma. Conclusion: The tumor doubling time of invasive lung adenocarcinoma differed according to the IASCL/ATS/ERS histologic classification.

Development of a New Flood Index for Local Flood Severity Predictions (국지홍수 심도예측을 위한 새로운 홍수지수의 개발)

  • Jo, Deok Jun;Son, In Ook;Choi, Hyun Il
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.47-58
    • /
    • 2013
  • Recently, an increase in the occurrence of sudden local flooding of great volume and short duration due to global climate changes has occasioned the significant danger and loss of life and property in Korea as well as most parts of the world. Such a local flood that usually occurs as the result of intense rainfall over small regions rises quite quickly with little or no advance warning time to prevent flood damage. To prevent the local flood damage, it is important to quickly predict the flood severity for flood events exceeding a threshold discharge that may cause the flood damage for inland areas. The aim of this study is to develop the NFI (New Flood Index) measuring the severity of floods in small ungauged catchments for use in local flood predictions by the regression analysis between the NFI and rainfall patterns. Flood runoff hydrographs are generated from a rainfall-runoff model using the annual maximum rainfall series of long-term observations for the two study catchments. The flood events above a threshold assumed as the 2-year return period discharge are targeted to estimate the NFI obtained by the geometric mean of the three relative severity factors, such as the flood magnitude ratio, the rising curve gradient, and the flooding duration time. The regression results show that the 3-hour maximum rainfall depths have the highest relationships with the NFI. It is expected that the best-fit regression equation between the NFI and rainfall characteristics can provide the basic database of the preliminary information for predicting the local flood severity in small ungauged catchments.

Determination of Hot Air Drying Characteristics of Squash (Cucurbita spp.) Slices

  • Hong, Soon-jung;Lee, Dong Young;Park, Jeong Gil;Mo, Changyeun;Lee, Seung Hyun
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.314-322
    • /
    • 2017
  • Purpose: This study was conducted to investigate the hot air drying characteristics of squash slices depending on the drying conditions (input air velocity, input air temperature, and sample thickness). Methods: The developed drying system was equipped with a controllable air blower and electric finned heater, drying chamber, and ventilation fan. Squash (summer squash called Korean zucchini) samples were cut into slices of two different thicknesses (5 and 10 mm). These were then dried at two different input air temperatures (60 and $70^{\circ}C$) and air velocities (5 and 7 m/s). Six well-known drying models were tested to describe the experimental drying data. A non-linear regression analysis was applied to determine model constants and statistical indices such as the coefficient of determination ($R^2$), reduced chi-square (${\chi}^2$), and root mean square error (RMSE). In addition, the effective moisture diffusivity ($D_{eff}$) was estimated based on the curve of ln(MR) versus drying time. Results: The results clearly showed that drying time decreased with an increase in input air temperature. Slice thickness also affected the drying time. Air velocity had a greater influence on drying time at $70^{\circ}C$ than at $60^{\circ}C$ for both thicknesses. All drying models accurately described the drying curve of squash slices regardless of slice thickness and drying conditions; the Modified Henderson and Pabis model had the best performance with the highest R2 and the lowest RMSE values. The effective moisture diffusivity ($D_{eff}$) changes, obtained from Fick's diffusion method, were between $1.67{\times}10^{-10}$ and $7.01{\times}10^{-10}m^2/s$. The moisture diffusivity was increased with an increase in input air temperature, velocity, and thickness. Conclusions: The drying time of squash slices varied depending on input temperature, velocity, and thickness of slices. The further study is necessary to figure out optimal drying condition for squash slices with retaining its original quality.