• Title/Summary/Keyword: Tilting-train

Search Result 345, Processing Time 0.03 seconds

A Study on Material Selection of the Carbody Structure of Korean Tilting Train express(TTX) through the Verification of Design Requirements (설계요구조건 검증을 통한 한국형 고속 틸팅열차(TTX)의 차체 재료 선정에 관한 연구)

  • 신광복;구동회;한성호;박기진
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.77-84
    • /
    • 2004
  • In order to determine the most suitable material system for achieving the lightweight design while fulfilling the design requirements of carbody structures of Korean Tilting Train eXpress(TTX), aluminum carbody. composite carbody, and hybrid carbody combined with aluminum and composite structures were considered in the present study. The finite-element analysis was used to verify the design requirements or the TTX carbody structures with the material system considered in the design stages. The stresses in the carbody structures and deflections of underframe against static load cases were used as design criteria. The results show that the hybrid carbody structures are beneficial with regard to weight savings and structural integrity in comparison to aluminum and composite carbody structures.

Structural Characteristics of a Hybrid Composite Carbody of Korean Tilting Train by Weight Load (한국형 틸팅열차용 복합재 차체의 하중적재에 따른 구조적 특성고찰)

  • Kim Jung-Seok;Jeong Jong Cheol;Han Jeong-Woo;Lee Sang-Jin;Kim Seung-Cheol;Seo Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.251-256
    • /
    • 2006
  • This paper explains manufacturing process, analysis and experimental studies on a hybrid composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a aluminium honeycomb core and woven fabric carbon/epoxy faces. In order to evaluate deformational behavior of the composite carbody, the static load test under vertical load has been conducted. From the test, the vertical deflection an겨 cross sectional deformation of the carbody were analysed and measured. The maximum deflection along the side sill was 9.25mm in the experiment and 8.28mm in the analysis. The maximum cross sectional deformation was measured 5.42mm at carbody center in lateral direction and 4.06mm at roof center in vertical direction.

Characteristics of the Running behavior and Safety for Tilting train due to Vertical Alignment (틸팅열차의 주행안전성과 고저틀림의 상관성 분석)

  • Choi, Il-Yoon;Um, Ju-Hwan;Lim, Yun-Sik
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1937-1942
    • /
    • 2010
  • Vehicle dynamic behavior should be investigated to establish the track irregularity criteria because they have an impact on vehicle dynamic behavior. The tilting train which have been developed in Korea will be operated on the conventional line. Therefore, it should be checked that the track irregularity criteria of conventional line is still available for the new vehicle. In this paper, the influence of vertical alignment on running behavior and safety for tilting train was instigated by numerical analysis. The wavelength and amplitude of vertical alignment were considered in scenario of this numerical analysis. This research is based on just numerical analysis and the final result which include measurement will be published in the future.

  • PDF

Life Cycle Assessment of Korean Tilting Train eXpress for Environmental Declaration of Product(EDP) (환경성적표지 인증을 위한 한국형 틸팅열차의 전과정평가)

  • Lee, Hyun-Bae;Kim, Yong-Ki;Lee, Kun-Mo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2262-2269
    • /
    • 2010
  • A recent Tilting train development operation for existing line high speed, already developed "Korean Tilting Train eXpress(bellow TTX)" and that doing demonstration of operation. And TTX are going to commercial service in 2012. They are preparing Environmental Declaration of Product(bellow EDP) for offering environmental impact of TTX to customer. EDP calculated environmental impact of target product's whole life cycle(raw material and manufacturing, distribution, use, end of life) more quantity for that improving environmental impact and then certification them, it is using for that estimate some part of existence of specific pollutants, GHGs, energy consumption and recycling ratio. In this study, 1) analyze the process of getting EDP, 2) satisfy common criteria and each criteria(plan) in the Product Category Rules(bellow PCRs) provided KEITI, 3) according to ISO 14044, implementation of LCA. 4) These results be shown Characterized Impact(bellow CI) about each life cycle stage and six impact categories(ARD, GWP, OD, AD, EU, POC).

  • PDF

Product Data Management for the system engineering of Highspeed Tilting EMU(TTX) (고속틸팅전기차량(TTX)의 시스템엔지니어링을 위한 PDM 구축에 관한 연구)

  • Han, Seong-Ho;Song, Young-Su;Shin, Kwang-Bok;Lee, Su-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.290-292
    • /
    • 2004
  • Tilting train has been developed to increase the operational speed of the trains on conventional lines which have many curves. This train are tilted at curves to compensate for unbalanced carbody centrifugal acceleration to a greater extent than compensation produced by the track cant, so that passengers do not feel centrifugal acceleration and thus trains can run at higher speed at curves. This paper developed PDM(product data management) to make a system engineering of TTX(tilting train express) with maximum operation speed 180 km/h.

  • PDF

The Study of Main Circuit and Control System Design for EMU Tilting Vechile (틸팅전동차용 추진 및 제어시스템 설계에 관한 연구)

  • Han, Seong-Ho;Lee, Su-Gil;Song, Yong-Soo;Lee, Eun-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1112-1114
    • /
    • 2006
  • Tilting train has been developed to increase the operational speed of the trains on conventional lines which have many curves. This train are tilted at curves to compensate for unbalanced carbody centrifugal acceleration to a greater extent than compensation produced by the track cant, so that passengers do not feel centrifugal acceleration and thus trains can run at higher speed at curves. This paper show that results of normal capacity calculations of the electrical equipments such as Main transformer, PWM converter, VVVF inverter, traction motor in TTX(tilting train express) with maximum operation speed 180km/h

  • PDF

A Study on Evaluation of corrective maintenance for the ATP on-board equipped in Tilting train (틸팅열차 차상신호장치 교정유지보수 평가에 관한 연구)

  • Lee, Kang-Mi;Shin, Duc-Ko;Baek, Jong-Hyen;Lee, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1989-1992
    • /
    • 2009
  • Maintenance is classified preventive maintenance before performing equipment failure and corrective maintenance after performing equipment failure. In preventive maintenance, we may analyze the failure data to end from beginning of equipment and allocate maintenance method and calculate maintenance cycle quantitatively by the failure data analysis. So, it has a merit to reduce system maintenance cost and to operate effectively but, it require high cost in system introducing and continuous operation to end of system. In corrective maintenance, we may calculate MTTR(mean time to repair) quantitatively based on function failure time. it can be based on establishing maintenance system for operation efficiency. In this paper, we may reflect the MTTR for the onboard equipped in Tilting train to establish maintenance system for Tilting train operation efficiency.

  • PDF

Study of measuring electrical signal for diagnosis of tilting train (TTX) during operation (틸팅열차 운행중 열차 전단을 위한 전기신호 계측 연구)

  • Lim, Jae-Chan;Kim, Jae-Chul;Han, Soung-Ho;Lee, Su-Gil
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.49-52
    • /
    • 2008
  • It's essential to measure electrical signals of Korea tilting train "Hanvit 200" during operation, Because we need to study operation characteristics of new electric "Hanvit 200" and we want to develop diagnosis system of main circuit of Korea tilting train "Hanvit 200". So, we measure electrical signals for developing diagnosis system of "Hanvit 200" during operation. We measure voltage and current of the primary winding of main transformer and analyze then. In result, we know that each operation mode has specific waveform and frequency. In addition, we also measure arc currents and arc voltage and we know that are of each situations has specific waveform of pattern.

  • PDF

Introduction of development speed-up project to existing main line (기존선 속도향상 실용기술개발 사업소개)

  • Koo Dong-hae;Han Seong-ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.26-29
    • /
    • 2004
  • In order to speed up basic concept is to enhance high speed, curve limit speed, cross limit speed, acceleration/deceleration speed. It is important to optimal interface fundamental technology of vehicle, rail, electrical power, and signal system. Tilting train has advantage minimizing investment cost of infra railway system for increasing train limit speed in curve. the developed tilting train should be operated to commercial service speed 180Km/h of 200Km/h at KNR upgrade railroad. This paper proposed the basic model of system engineering for developing of tilting EMU (maximum operation speed : 180km/h) with speed-up of conventional railway system.

  • PDF

Analysis and Design of the Composite Carbody of Tilting Train (복합재 틸팅열차 차체 구조물의 해석 및 설계)

  • Kim Soo-Hyun;Kang Sang-Guk;Lee Sang-Eui;Kim Chun-Gon;Lee Sang-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.47-50
    • /
    • 2004
  • Weight reduction of the carbody is of great concern in developing high speed tilting train. Currently the composite materials are widely applied to the carbody structure due to their excellent material properties such as high specific strength and stiffness characteristics. In this paper, finite element analysis was conducted to design sandwich structures of composite carbody of the Korean Tilting Train eXpress(TTX). Several load tests on the carbody according to JIS E 7105, such as static vertical, compressive and torsional load tests was performed by finite element analysis, and the structural safety of composite carbody structure was verified.

  • PDF