• Title/Summary/Keyword: Tilt dynamics

Search Result 57, Processing Time 0.025 seconds

Smectic Layer Reorientation Induced by AC Field

  • Song, Jun-Ho;Kim, Yong-Bae;Kumar, Satyendra;Souk, Jun-Hyung;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.415-418
    • /
    • 2002
  • We have studied electro-optic properties and layer deformations in the smectic phases of 4-(6ethoxy-l-trifluoromethyl-hexyloxycarbonyl)-phenyl-4-Nonyloxybiphenyl-4-carboxylat ( TFMEOHPNBC ) having fluorine attached to one of its benzene rings by electro-optical and small angle x-ray scattering techniques. 3 and 5${\mu}m$ thick test cells were prepared using beryllium plates to minimize x-ray beam absorption. Layer structure and orientation was studied while changing the amplitude and frequency of the applied electric field as a function of cell temperature. We observed that the chevron layer tilt angle is reduced and layer spacing is increased as stabilizing in antiferroelectric phase. This result is extraordinary that there is dimerization in antiferroelectric phase. We also found that there is a threshold electric field that changes the chevron structure to bookshelf structure. This threshold electric field depends on the frequency and temperature as shown in Fig.1. We will discuss the dynamics of layer orientation as determined from the x-ray, electro-optic and dielectric spectroscopy.

  • PDF

Development of Panel-Based Rapid Aerodynamic Analysis Method Considering Propeller Effect (프로펠러 효과를 반영 가능한 패널 기반 신속 공력 해석 기법 개발)

  • Tai, Myungsik;Lee, Yebin;Oh, Sejong;Shin, Jeongwoo;Lim, Joosup;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • Electric-powered distributed propulsion aircraft possess a complex wake flow and mutual interference with the airframe, due to the use of many propellers. Accordingly, in the early design stage, rapid aerodynamic and load analysis considering the effect of propellers for various configurations and flight conditions are required. In this study, an efficient panel-based aerodynamic analysis method that can take into account the propeller effects is developed and validated. The induced velocity field in the region of propeller wake is calculated based on Actuator Disk Theory (ADT) and is considered as the boundary condition at the vehicle's surface in the three-dimensional steady source-doublet panel method. Analyses are carried out by selecting an isolated propeller of the Korea Aerospace Research Institute (KARI)'s Quad Tilt Propeller (QTP) aircraft and the propeller-wing configuration of the former experimental study as benchmark problems. Through comparisons with the results of computational fluid dynamics (CFD) based on actuator methods, the wake velocity of propeller and the changes in the aerodynamic load distribution of the wing due to the propeller operation are validated. The method is applied to the analysis of the Optional Piloted Personal Aerial Vehicle (OPPAV) and QTP, and the practicality and validity of the method are confirmed through comparison and analysis of the computational time and results with CFD.

Surface Lay Effects on the Lubrication Characteristics in the Valve Part of a Swash-plate Type Axial Piston Pump (표면가공무늬가 사판식 액셜 피스톤펌프의 밸브부 윤활특성에 미치는 영향에 관한 연구)

  • Shin, Jung-Hun;Kang, Bo-Sik;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.28 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • This application study of a swash-plate type axial piston pump was concerned about the lubrication characteristics between cylinder barrel and valve plate which are the main rotating body and its opposite sliding part respectively. A computer simulation was implemented to assess bearing and sealing functions of the fluid film between cylinder barrel and valve plate. A numerical algorithm was developed to facilitate simultaneous calculations of dynamic cylinder pressure, 3 degree-of-freedom barrel motions considering inertia effect, and fluid film pressure assuming full fluid film lubrication regime. Central clearance, tilt angle, and azimuth angle of the rotating body were calculated for each time step. Surface waviness was found to be an influential factor due to the small fluid film thickness which can appear in flat land bearings. Five surface lays which can form on the lubrication surface in accordance with machining process were defined and analyzed using the simulation tool. Oil leakage flow and frictional torque in the fluid film between cylinder barrel and valve plate were also calculated to discuss in the viewpoint of energy loss. The simulation results showed that in actual sliding conditions proper surface non-flatness can make a positive effect on the energy efficiency and reliability of the thrust bearing.

Accuracy and Reliability of The Spine-Pelvis Monitor to Record Three-Dimensional Characteristics of The Spine-Pelvic Motion

  • Kim, Jung-Yong;Yoon, Kyung-Chae;Min, Seung-Nam;Yoon, Sang-Young
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.345-352
    • /
    • 2012
  • Objective: The aim of this study is to evaluate the accuracy and reliability of Spine-Pelvis Monitor(SPM) that was developed to measure 3-dimensional motion of spine and pelvis using tilt sensor and gyro sensor. Background: The main cause of low back pain is very much associated with the task using the low back and pelvis, but no measurement technique can quantify the both spine and pelvis. Method: For testing the SPM, 125 angles from three anatomical planes were measured three times in order to evaluate the accuracy and reliability. The accuracy of SPM in measuring dynamic motion was evaluated using digital motion analysis system. The motion pattern captured by two measuring methods was compared with each other. In result, the percentage error and Cronbach coefficient alpha were calculated to evaluate the accuracy and reliability. Results: The percentage error was 0.35% in flexion-extension on sagittal plane, 0.43% in lateral bending on coronal plane, and 0.40% in twisting on transverse plane. The Cronbach coefficient alpha was 1.00, 0.99 and 0.99 in sagittal, coronal and transvers plane, respectively. Conclusion: The SPM showed less than 1% error for static measurement, and showed reasonably similar pattern with the digital motion system. Application: The results of this study showed that the SPM can be the measuring method of spine pelvis motion that enhances the kinematic analysis of low back dynamics.

Study on Optimum Installation of Fan in Standard Hanwoo Loose Barn (한우사 내 송풍팬의 최적 설치에 관한 연구)

  • Lee, Seung-Joo;Chang, Dong-Il;Choi, Yoon-Hyuck;Yang, Jae-Woong;Min, Byeong-Joo;Gutierrez, Winson M.;Chang, Hong-Hee
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.350-356
    • /
    • 2010
  • The fans installed in standard Hanwoo loose barns (room size : 10 m (width) $\times$ 5 m (length)) are frequently used to reduce Hanwoo's heat stress during hot weather and to dry the wet floor. However, the most effective method of installing fans has not been suggested yet. Therefore, this study was carried out to evaluate two methods of installing fans under the ceiling of Hanwoo loose barn by using CFD (Computational Fluid Dynamics) code, FLUENT and to recommend the optimum fan installing method. The fan installation options were fan tilting angles of $45^{\circ}$ and $0^{\circ}$ (horizontal). The fans of 1 m diameter were installed at 3 m above floor. A velocity scale on 10 cm and 110 cm above floor and air flow pattern were used as the parameters to evaluate the fan installing methods. The fans tilted at $45^{\circ}$ angle produced higher wind at 10 cm and 110 cm above floor and more uniform air flow pattern, compared with the fans installed horizontally. Based on these results, fans tilted at $45^{\circ}$ angle may help to reduce Hanwoo's heat stress and will dry the floor better than fans installed horizontally. Therefore, it is suggested that the fans of 1 m diameter in a standard Hanwoo loose barn should be installed at a $45^{\circ}$ tilt angle and 3 m above floor with spacing of 5 m at the center of a room column.

Crustal Uplift and Microseismic Activity around Syowa Station, Antarctica

  • Kaminuma, Katsutada
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.249-253
    • /
    • 2002
  • There is a great deal evidence concerning crustal uplift, after deglaciation, in the vicinity of Syowa Station $(69^{\circ}S,\;39^{\circ}E)$ from tide gauge data, seismic evidence, raised beaches, marine terraces, etc. The geomorphological and tide gauge data show that the crustal uplift is going on around Syowa Station. Seismic observations at Syowa Station started in 1959. Phase readings of the earthquakes have been published by National Institute of Polar Research once a year since 1968, as one of the Data Report Series. Eighteen local earthquakes were detected on short period seismograms at Syowa Station in 1990-2000. The seismicity during the period from 1990 to 2000 was lower than that from 1987 to 1989 when epicenters of local earthquakes were determined by tripartite seismic array. Local earthquake activity corroborates the crustal uplif4 which is an intermittent phenomenon. Sea level falling of 4.5 mm/y was found using data in 1975-1992. This felling rate is consistent with the geomorphological data. A route for repeat leveling survey was established in East Ongul Island. No appreciable change of sea level was observed for the last 14 years. A dynamics of the crustal uplift around Syowa Station has been discussed using geomorphological data, ocean tide, and seismic and leveling data, which is estimated to be an intermittent phenomenon. When local seismic activity is high, the crustal uplift is estimated to be going on. On the contrary, the crustal uplift is in dormancy when the local seismicity is low. Repeated leveling measurements suggest no significant changes, which further supports the idea that the crustal uplift in offshore is not a tilt trend movement but a block movement.

Development of Preliminary Conceptual Design/ Comprehensive Analysis Programs for Next Generation Rotorcraft (차세대 회전익 기본개념설계/통합해석 프로그램의 개발)

  • Oh, Sejong;Park, Donghoon;Ji, Hyung Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • The authors had presented two previous papers[1,2] on Helicopter/Rotorcraft develoment in Europe and US. Meanwhile, the next generation rotorcrafts, currently under development in US and Europe, have new configurations (tilt-rotor, coaxial, compound) of rotor-type vertical takeoff/landing rotorcrafts to overcome the disadvantages of traditional helicopters. For developing these new types of rotorcrafts, the upgraded conceptual design/comprehensive programs are required. In US and Europe, they are already developing new program tools with their technologies and database obtained during more than last half centuries. For us, many academia, research institutes and industrial engineers have experienced and developed core technologies on rotorcrafts (aerodynamics, structural analysis, flight dynamics, and noise analysis etc.) comparable to US and Europe during last couple of decades of developing helicopters and various configurations of rotorcrafts. In this paper, the pros and cons of conceptual design/comprehensive tools currently used in US and Europe have been summarized. Furthermore, the possibilities and problems to develope our own design and analysis tools have been studied.