• Title/Summary/Keyword: Tight Junctions

Search Result 69, Processing Time 0.019 seconds

Structure and Function of Tight Junctions in the Skin (피부에서의 치밀이음의 구조와 기능)

  • Song, Mee;Baek, Ji Hwoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.2
    • /
    • pp.181-188
    • /
    • 2022
  • The skin protects the body from excessive water loss and the invasion of harmful substances, such as chemicals and microbes. The stratum corneum, is recognized as a very important physical barrier. However, in recent years evidence emerged that tight junctions (TJ) might also play a crucial role in barrier function of the skin. In the present study, TJ proteins including transmembrane proteins and plaque proteins, skin permeability barrier function and skin diseases of TJ were reviewed.

The Expression and Localization of ZO-1, Claudin 1, and Claudin 4 in the Pig Epididymis (돼지 정소상체에서 ZO-1, Claudin 1 및 Claudin 4의 발현 양상)

  • Park, Yun-Jae;Kim, Bongki
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.190-196
    • /
    • 2019
  • Tight junctions are constituents of the blood-epididymis barrier that play roles in regulating the unidirectional transcellular transport of ions, water, and solutes to maintain optimal conditions for sperm maturation and storage. Claudin 1 (Cldn1) and 4 (Cldn4) are known as tight junction proteins and are expressed in the basolateral membranes as well as tight junctions in the epididymis of rodents. Here, we examined the expression and localization of Cldn1 and 4 to determine the function of these proteins in the pig epididymis. Cldn1 was highly expressed in the basolateral membrane of epithelial cells in the caput and corpus regions of the epididymis. In the cauda region, however, Cldn1 labeling was significantly decreased in the basolateral membrane of epithelial cells. In contrast, labeling indicated that Cldn4 was expressed in the basolateral membrane in the cauda region of the epididymis and was present at punctate reactive sites in the caput and corpus regions. However, in no region of the epididymis did we detect colocalization of Cldn1 and 4 with labeled ZO-1, the distribution of which is restricted to the tight junctions. Our results indicate that Cldn1 and 4 were region-specifically expressed in the pig epididymis but not present in the tight junctions of epididymal epithelium. In addition, reciprocal regulation in specific regions of the epididymis between Cldn1 and 4 may play an important role in generating an optimal luminal environment for sperm maturation and storage in the pig epididymis.

Tight junctional inhibition of entry of Toxoplasma gondii into MDCK cells (MDCK세포의 tight junction 형성이 Toxoplusmu gondii의 숙주세포 침투에 미치는 효과)

  • 남호우;윤지혜
    • Parasites, Hosts and Diseases
    • /
    • v.28 no.4
    • /
    • pp.197-206
    • /
    • 1990
  • Various conditions of cultures were performed to investigate the role of tight junctions formed between adjacent MDCK cells on the entry of Toxoplasma. When MDCK cells were cocultured with excess number of Toxoplasma at the seeding density of 1×105, 3×105, and 5×105 cells/ml for 4 days, the number of intracellular parasites decreased rapidly as the host cells reached saturation density, i.e., the formation of tight junctions. When the concentration of calcium in the media (1.8 mM in general) was shifted to $5{\mu}M$ that resulted in the elimination of tight junction, the penetration of Toxoplasma increased about 2-fold(p<0.05) in the saturated culture, while that of non-saturated culture decreased by half. Trypsin-EDTA which was treated to conquer the tight junctions of saturated culture favored the entry of Toxoplasma about 2.5-fold(P<0.05) compared to the non-treated, while that of non- saturated culture decreased to about one fifth. It was suggested that the tight junctions of epithelial cells play a role as a barrier for the entry of Toxoplasma and Toxoplasma penetrate into hoot cells through membrane structure-specific, i.e., certain kind of receptors present on the basolateral rather than apical surface of MDCK cells.

  • PDF

Inhibition of NAD(P)H:Quinone Oxidoreductase 1 by Dicumarol Reduces Tight Junction in Human Colonic Epithelial Cells (인간 대장상피세포 밀착연접 형성과정에서 NQO1 저해 효과)

  • Hong, Ji;Zhang, Peng;Yoon, I Na;Kim, Ho
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.531-536
    • /
    • 2016
  • We previously showed that NAD(P)H:quinone oxidoreductase 1 (NQO1) knockout (KO) mice exhibited spontaneous inflammation with markedly increased mucosal permeability in the gut, and that NQO1 is functionally associated with regulating tight junctions in the mucosal epithelial cells that govern the mucosal barrier. Here, we confirm the role of NQO1 in the formation of tight junctions by human colonic epithelial cells (HT29). We treated HT29 cells with a chemical inhibitor of NQO1 (dicumarol; 10 μM), and examined the effect on the transepithelial resistance of epithelial cells and the protein expression levels of ZO1 and occludin (two known regulators of tight junctions between gut epithelial cells). The dicumarol-induced inhibition of NQO1 markedly reduced transepithelial resistance (a measure of tight junctions) and decreased the levels of the tested tight junction proteins. In vivo, luminal injection of dicumarol significantly increased mucosal permeability and decreased ZO1 and occludin protein expression levels in mouse guts. However, in contrast to the previous report that the epithelial cells of NQO1 KO mice showed marked down-regulations of the transcripts encoding ZO1 and occludin, these transcript levels were not affected in dicumarol-treated HT29 cells. This result suggests that the NQO1-depedent regulation of tight junction molecules may involve multiple processes, including both transcriptional regulation and protein degradation processes such as those governed by the ubiquitination/proteasomal, and/or lysosomal systems.

NQO1-Knockout Mice Are Highly Sensitive to Clostridium Difficile Toxin A-Induced Enteritis

  • Nam, Seung Taek;Hwang, Jung Hwan;Kim, Dae Hong;Lu, Li Fang;Hong, Ji;Zhang, Peng;Yoon, I Na;Hwang, Jae Sam;Chung, Hyo Kyun;Shong, Minho;Lee, Chul-Ho;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1446-1451
    • /
    • 2016
  • Clostridium difficile toxin A causes acute gut inflammation in animals and humans. It is known to downregulate the tight junctions between colonic epithelial cells, allowing luminal contents to access body tissues and trigger acute immune responses. However, it is not yet known whether this loss of the barrier function is a critical factor in the progression of toxin A-induced pseudomembranous colitis. We previously showed that NADH:quinone oxidoreductase 1 (NQO1) KO (knockout) mice spontaneously display weak gut inflammation and a marked loss of colonic epithelial tight junctions. Moreover, NQO1 KO mice exhibited highly increased inflammatory responses compared with NQO1 WT (wild-type) control mice when subjected to DSS-induced experimental colitis. Here, we tested whether toxin A could also trigger more severe inflammatory responses in NQO1 KO mice compared with NQO1 WT mice. Indeed, our results show that C. difficile toxin A-mediated enteritis is significantly enhanced in NQO1 KO mice compared with NQO1 WT mice. The levels of fluid secretion, villus disruption, and epithelial cell apoptosis were also higher in toxin A-treated NQO1 KO mice compared with WT mice. The previous and present results collectively show that NQO1 is involved in the formation of tight junctions in the small intestine, and that defects in NQO1 enhance C. difficile toxin A-induced acute inflammatory responses, presumably via the loss of epithelial cell tight junctions.

Effects of 17β-Estradiol on Colonic Permeability and Inflammation in an Azoxymethane/Dextran Sulfate Sodium-Induced Colitis Mouse Model

  • Song, Chin-Hee;Kim, Nayoung;Sohn, Sung Hwa;Lee, Sun Min;Nam, Ryoung Hee;Na, Hee Young;Lee, Dong Ho;Surh, Young-Joon
    • Gut and Liver
    • /
    • v.12 no.6
    • /
    • pp.682-693
    • /
    • 2018
  • Background/Aims: Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases (IBDs) such as ulcerative colitis. This dysfunction is caused by increased permeability and the loss of tight junctions in intestinal epithelial cells. The aim of this study was to investigate whether estradiol treatment reduces colonic permeability, tight junction disruption, and inflammation in an azoxymethane (AOM)/dextran sodium sulfate (DSS) colon cancer mouse model. Methods: The effects of $17{\beta}$-estradiol (E2) were evaluated in ICR male mice 4 weeks after AOM/DSS treatment. Histological damage was scored by hematoxylin and eosin staining and the levels of the colonic mucosal cytokine myeloperoxidase (MPO) were assessed by enzyme-linked immunosorbent assay (ELISA). To evaluate the effects of E2 on intestinal permeability, tight junctions, and inflammation, we performed quantitative real-time polymerase chain reaction and Western blot analysis. Furthermore, the expression levels of mucin 2 (MUC2) and mucin 4 (MUC4) were measured as target genes for intestinal permeability, whereas zonula occludens 1 (ZO-1), occludin (OCLN), and claudin 4 (CLDN4) served as target genes for the tight junctions. Results: The colitis-mediated induced damage score and MPO activity were reduced by E2 treatment (p<0.05). In addition, the mRNA expression levels of intestinal barrier-related molecules (i.e., MUC2, ZO-1, OCLN, and CLDN4) were decreased by AOM/DSS-treatment; furthermore, this inhibition was rescued by E2 supplementation. The mRNA and protein expression of inflammation-related genes (i.e., KLF4, NF-${\kappa}B$, iNOS, and COX-2) was increased by AOM/DSS-treatment and ameliorated by E2. Conclusions: E2 acts through the estrogen receptor ${\beta}$ signaling pathway to elicit anti-inflammatory effects on intestinal barrier by inducing the expression of MUC2 and tight junction molecules and inhibiting pro-inflammatory cytokines.

Gilgyung-tang Inhibits the Migration and Invasion of Human Bladder Cancer 5637 Cells through the Tightening of Tight Junctions and Inhibition of Matrix Metalloproteinase Activity (길경탕의 치밀결합 강화 및 MMPs의 활성 억제를 통한 인체방광암세포의 이동성 및 침윤성의 억제)

  • Hong, Su-hyun;Choi, Yung-hyun
    • The Journal of Internal Korean Medicine
    • /
    • v.37 no.1
    • /
    • pp.16-25
    • /
    • 2016
  • Objectives: Gilgyung-tang (GGT) has been used as one of the main multi-herb formulas to treat “Peo-ong” (lung abscess). In this study, we investigated the inhibitory effects of water extracts of GGT on cell migration and invasion, two critical cellular processes that are often deregulated during metastasis, in human bladder cancer 5637 cells.Methods: Effects on cell viability were quantified using an MTT assay. To analyze the anti-metastatic effects, we conducted a wound healing migration assay, an in vitro invasiveness assay, and a measurement of the transepithelial electrical resistance (TER). The expression of protein and mRNA were measured by Western blotting and real-time polymerase chain reaction (RT-PCR), respectively.Results: GGT markedly inhibited the cell motility and invasiveness of 5637 cells within the concentration range that was not cytotoxic. The inhibitory effects of GGT on cell invasiveness were associated with tightening of the tight junctions (TJs), which was demonstrated by an increase in the TER. The RT-PCR and Western blotting results indicated that GGT decreased the levels of claudin proteins. GGT also inhibited the activity and expression of matrix metalloproteinase (MMP)-2 and -9 and simultaneously increased the levels of tissue inhibitor of metalloproteinase-1 and -2.Conclusions: Our findings suggest that GGT reduces both the migration and the invasion of 5637 cells by modulating the activity of TJs and MMPs.

Electron Microscopic Studies on Cellular Characteristics and Transport Systems in Tight Epithelia (Tight epithelia의 세포특성과 수송체계에 관한 전자현미경적 연구)

  • Jeon, Jin-Seok
    • Applied Microscopy
    • /
    • v.26 no.1
    • /
    • pp.47-57
    • /
    • 1996
  • This study analysed the transport properties of bladder mucosa known as the typical system of 'tight epithelia' by using TEM observation with both rapid freeze-fracture electron microscopy and thin-section method and mainly analysed the cellular characteristics of turtle bladder epithelial cells. The bladder epithelium, like other tight epithelia, consists of a heterogenous population of cells. The majority of the mucosal cells are the granular cells and may function primarily in the process of active $Na^+$ reabsorption in turtle bladder. The remaining two types of cells are rich in mitochondria and is believed to be res-ponsible for a single major transport system, namely, $H^+$ transport by A-type of cell and urinary $HCO_{3}^-$ secretion by B-type of cell. As viewed in freeze-fracture electron micrograph, the tight junctions form a continuous tight seal around the epithelial cells, thus restricting diffusion in tight epithelia. In addition, the apical surface membranes have a population of rod-shaped intramembranous particles (IMPs). It is believed that these IMPs probably represent the components of the proton pump. However, it is likely that these characteristics of the apical transporter remain to be clarified in tight epithelial cells.

  • PDF

Inhibition of Migration and Invasion of LNCap Human Prostate Carcinoma Cells by Doxorubicin through Inhibition of Matrix Metalloproteinase Activity and Tightening of Tight Junctions (Doxorubicin에 의한 치밀결합 강화 및 MMPs의 활성 억제를 통한 LNCap 전립선 암세포의 이동성 및 침윤성의 억제)

  • Choi, Yung Hyun;Shin, Dong Yeok;Kim, Wun-Jae
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.700-706
    • /
    • 2014
  • Doxorubicin (trade name adriamycin), an anthracycline antibiotic, is commonly used in the treatment of a wide range of cancers, including hematological malignancies, many types of carcinoma, and soft tissue sarcomas. It is closely related to the natural product daunomycin, and like all anthracyclines, it works by intercalating DNA. Its most serious adverse effect is life-threatening heart damage. Its anti-metastatic mechanisms in human prostate carcinomas are not fully understood. In this study, we used LNCap human prostate carcinoma cells to investigate the inhibitory effects of doxorubicin on cell motility and invasion, two critical cellular processes that are often deregulated during metastasis. Doxorubicin treatment inhibited cell migration and invasiveness of LNCap cells without showing any toxicity. Doxorubicin treatment also suppressed the activity and expression of matrix metalloproteinase (MMP)-2 and MMP-9, which were associated with up-regulated expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 in LNCap cells. Doxorubicin treatment also attenuated the expression levels of claudin family members (claudin-1, -2,-3 and -4), major components of tightening of tight junctions (TJs) and increased the tightening of TJs, as demonstrated by an increase in transepithelial electrical resistance. The present findings demonstrate that doxorubicin reduces the migration and invasion of prostate carcinomas LNCap cells by modulating the activity of TJs and MMPs.

Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. enterica

  • Chang, Chi Huan;Teng, Po Yun;Lee, Tzu Tai;Yu, Bi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1797-1808
    • /
    • 2020
  • Objective: This study assessed the effects of probiotics on cecal microbiota, gene expression of intestinal tight junction proteins, and immune response in the cecal tonsil of broiler chickens challenged with Salmonella enterica subsp. enterica. Methods: One-day-old broiler chickens (n = 240) were randomly allocated to four treatments: negative control (Cont), multi-strain probiotic-treated group (Pro), Salmonella-infected group (Sal), and multi-strain probiotic-treated and Salmonella-infected group (ProSal). All chickens except those in the Cont and Pro groups were gavaged with 1×108 cfu/mL of S. enterica subsp. enterica 4 days after hatching. Results: Our results indicated that body weight, weight gain, and feed conversion ratio of birds were significantly reduced (p<0.05) by Salmonella challenge. Chickens challenged with Salmonella decreased cecal microbial diversity. Chickens in the Sal group exhibited abundant Proteobacteria than those in the Cont, Pro, and ProSal groups. Salmonella infection downregulated gene expression of Occludin, zonula occludens-1 (ZO1), and Mucin 2 in the jejunum and Occludin and Claudin in the ileum. Moreover, the Sal group increased gene expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), IL-1β, and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) and reduced levels of transforming growth factor-β4 and IL-10 compared with the other groups (p<0.05). However, chickens receiving probiotic diets increased Lactobacillaceae abundance and reduced Enterobacteriaceae abundance in the ceca. Moreover, supplementation with probiotics increased the mRNA expression of Occludin, ZO1, and Mucin 2 in the ileum (p<0.05). In addition, probiotic supplementation downregulated the mRNA levels of IFN-γ (p<0.05) and LITAF (p = 0.075) and upregulated IL-10 (p = 0.084) expression in the cecal tonsil. Conclusion: The administration of multi-strain probiotics modulated intestinal microbiota, gene expression of tight junction proteins, and immunomodulatory activity in broiler chickens.