• Title/Summary/Keyword: Tieback anchor

Search Result 13, Processing Time 0.017 seconds

Analysis of Ultimate Capacity of Plate Anchor on Loading Rate Capacity in Clay (점토 지반에서 인발속도에 따른 판앵커의 극한 인발저항력 분석)

  • Seo, Young-Kyo;Ryu, Dong-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.15-21
    • /
    • 2013
  • Anchors are primarily designed and constructed to resist outwardly directed loads imposed on the foundation of a structure. These outwardly directed loads are transmitted to the soil at a greater depth by the anchors. Buried anchors have been used for thousands of years to stabilize structures. Various types of earth anchors are now used for the uplift resistance of transmission towers, utility poles, submerged pipelines, and tunnels. Anchors are also used for the tieback resistance of earth-retaining structures, waterfront structures, at bends in pressure pipelines, and when it is necessary to control thermal stress. In this research, we analyzed the uplift behavior of plate anchors in clay using a laboratory experiment to estimate the uplift behavior of plate anchors under various conditions. To achieve the research purpose, the uplift resistance and displacement characteristics of plate anchors caused by the embedment ratio, plate diameter, and loading rate were studied, compared, and analyzed for various cases.

Analysis of Loading Rate Capacity of Plate Anchor in Sand (사질토 지반에 설치된 판앵커의 인발속도에 따른 저항력 분석)

  • Ryu, Dong-Man;Seo, Young-Kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.31-39
    • /
    • 2012
  • Anchors are primarily designed and constructed to resist outwardly directed loads imposed on the foundation of a structure. These outwardly directed loads are transmitted to the soil at a greater depth by the anchors. Buried anchors have been used for thousands of years to stabilize structures. Nowadays, various types of earth anchors are used for the uplift resistance of transmission towers, utility poles, submerged pipelines, and tunnels. Anchors are also used for the tieback resistance of earth-retaining structures, waterfront structures, at bends in pressure pipelines, and when it is necessary to control thermal stress. In this research we analyzed the uplift behavior of plate anchors in sand using a laboratory experiment to estimate the uplift behavior of plate anchors under various conditions. To achieve the research purpose, the uplift resistance and displacement characteristics of plate anchors caused by the embedment ratio, plate diameter, and loading rate were studied, compared, and analyzed in various cases.

Evaluation of the Sequential Behavior of Tieback Wall in Sand by Small Scale Model Tests

  • Seo, Dong-Hee;Chang, Buhm-Soo;Jeong, Sang-Seom;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.113-129
    • /
    • 1999
  • In this study, a total of 12 types of sequential model tests were conducted at the laboratory for small scale anchored walls. The sequential behavior for flexible wall embedded in sand was investigated by varying degrees of relative density of Joomoonjin sand and flexibility number of model wall. The model tests were carried out in a 1000mm width, 1500mm length, and 1000mm high steel box. Load cells, pressure cells, displacement transducer and dial gauges were used to measure the anchor forces, lateral wall deflections, lateral earth pressures and vertical displacements of ground surface, respectively. Limited model tests were performed to examine the parameters for soil-wall interaction model and the formulation of analytical method was revised in order to predict the behavior of anchored wall in sand. Based on the model tests and proposed analytical method, model simulations were performed and the predictions by the present approach were compared with measurements by the model tests and predictions by other commercial programs. It is shown that the prediction by the present approach simulates qualitatively well the general trend observed for model test.

  • PDF