• Title/Summary/Keyword: Tidal deposits

Search Result 63, Processing Time 0.025 seconds

Late Quaternary (Late Pleistocene and Holocene) Stratigraphy and Unconformity in the Kimpo Tidal Deposits, Kyunggi Bay, West Coast of Korea (경기만 김포 조간대 지층의 제 4기 후기 층서)

  • 박용안;최경식;도성재;오재호
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.79-89
    • /
    • 1999
  • Three deep borings to obtain vertical continuous samples including weathered basement soils (KP-1, KP-2 and KP-3) were carried out in the reclaimed Kimpo tidal flat with purposes to establish late Quaternary stratigraphy. On the basis of detailed observations and descriptions on color, sedimentary structure and textural composition of cored sediments, four lithostratigraphic units are classified. From the stratigraphic top to bottom, they are Holocene tidal sand and muddy deposit (Unit I), early Holocene freshwater marsh muddy deposit (Unit II), late Pleistocene tidal sand and muddy deposit (Unit III) and late Pleistocene basal fluvial gravel deposit (Unit IV). In particular, Unit III is divided into two parts: the upper part-weathered and cryoturbated part during the Last Glacial Maximum (Unit III-a) and the lower part-unweathered tidal sand and muddy deposit (Unit III-b).

  • PDF

Late Quaternary Sequence Stratigraphy in Kyeonggi Bay, Mid-eastern Yellow Sea (황해 중동부 경기만의 후기 제4기 순차층서 연구)

  • Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.242-258
    • /
    • 2012
  • The Yellow Sea has sensitively responded to high-amplitude sea-level fluctuations during the late Quaternary. The repeated inundation and exposure have produced distinct transgression-regression successions with extensive exposure surfaces in Kyeonggi Bay. The late Quaternary strata consist of four seismic stratigraphic units, considered as depositional sequences (DS-1, DS-2, DS-3, and DS-4). DS-1 was interpreted as ridge-forming sediments of tidal-flat and estuarine channel-fill facies, formed during the Holocene highstand. DS-2 consists of shallow-marine facies in offshore area, which was formed during the regression of Marine Isotope Stage (MIS)-3 period. DS-3 comprises the lower transgressive facies and the upper highstand tidal-flat facies in proximal ridges and forced regression facies in distal ridges and offshore area. The lowermost DS-4 rests on acoustic basement rocks, considered as the shallow-marine and shelf deposits formed before the MIS-6 lowstand. This study suggests six depositional stages. During the first stage-A, MIS-6 lowstand, the Yellow Sea shelf was subaerially exposed with intensive fluvial incision and weathering. The subsequent rapid and high amplitude rise of sea level in stage-B until the MIS-5e highstand produced transgressive deposits in the lowermost part of the MIS-5 sequence, and the successive regression during the MIS-5d to -5a and the MIS-4 lowstand formed the upperpart of the MIS-5 sequence in stage-C. During the stage-D, from the MIS-4 lowstand to MIS-3c highstand period, the transgressive MIS-3 sequence formed in a subtidal environment characterized by repetitive fluvial incision and channel-fill deposition in exposed area. The subsequent sea-level fall culminating the last glacial maximum (Stage-E) made shallow-marine regressive deposits of MIS-3 sequence in offshore distal area, whereas it formed fluvial channel-fills and floodplain deposits in the proximal area. After the last glacial maximum, the overall Yellow Sea shelf was inundated by the Holocene transgression and highstand (Stage-F), forming the Holocene transgressive shelf sands and tidal ridges.

Stratigraphic Sequence and Depositional Environment of Unconsolidated Deposits in the West Seacoast (서해안 미고결 지층의 퇴적이력 및 퇴적환경)

  • Lee, Yong-Mok;Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Kyu-Hwan;Yoon, Yeo-Jin;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.55-68
    • /
    • 2012
  • The west seacoast has approximately 83% of tidal flat in Korea. Gyeonggi-do and Inchon has 35.1%. This study was carried out to understand depositional environment and properties of tidal deposits that distributed in the Gyeonggi bay. On the basis of observation and description on mineralogical, geochemical, physical properties, detailed sedimentary unit has been respectively distinguished Based on. stratigraphic position, facies and unconformity, the intertidal zones are classified into four sedimentary units, and bedrock over the units has been developed in the order of Unit 4${\rightarrow}$Unit 3${\rightarrow}$Unit 2${\rightarrow}$Unit 1. The intertidal sediment deposits of Gyeonggi Bay were compared with those of west coast. In Cheongra area all strata of Unit 4-Unit 3-Unit 2-Unit 1 appear. In Yeongjong-do Unit 2-Unit 1, in Incheon Bridge and Songdo area Unit 4-Unit 3-Unit 1 are observed. In Daesan area Unit 4-Unit 3-Unit 1 are observed. Average clay mineral content ratio is 8.2% in Cheongra area, 2.9% in Yeongjong Island, 18.4% in Incheon Bridge, 24.6% in Songdo area.

Sedimentological and Hydromechanical Characteristics of Bed Deposits for the Cultivation of Manila clam, Ruditapes philippinarum in Gomso Tidal Flat (곰소만 조간대 바지락 양식장 저질의 퇴적학적 및 수리역학적 특성)

  • CHO Tae-Chin;LEE Sang-Bae;KIM Suck-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.245-253
    • /
    • 2001
  • To investigate the effects of hydromechanical and textural characteristics of sediment deposits on the cultivation of Manila clam, Ruditapes philippinarum surface and sub-surface core sediments were collected seasonally in Gomso tidal flat. Grain size distribution were analyzed to investigate the annual variation of sediment texture. In winter unimodal distribution of grain size with the peak at $5\phi$ is dominant However, during the summer sediment texture become a little bit coarser and grain size distribution shows the peaks at $4\~5 \phi$. Optimum sediment texture for the cultivation of manila clam, R. philippinarum was found to be sandy silt in which mean Brain size was between 4 and $5 \phi$ with the sand content less than $50\%$ and clay content of $5\~10\%$. Mechanical and hydrological characteristics of sediment deposits were also studied in the laboratory and the results were applied to the numerical simulation for the behavior of surface sediment subjected to the cyclic loading from sea-water level change. Results of numerical simulation illustrate that the permeability of sediment had to be maintained in the range of $10^{-11}\sim10^{-12}m^2$ to ensure the proper sedimentological environment for the cultivation of manila clam, R. philippinarum. The deposits of virtually impermeable mud layer, with the threshold thickness of 4 cm, would be very hazardous to clam habitat.

  • PDF

A Study on the Environment Change of Tidal Flat in the Cheonsu Bay Using Remotely Sensed Data (원격탐사 자료를 이용한 천수만 간석지 환경변화에 관한 연구)

  • Jang, Dong-Ho;Chi, Kwang-Hoon;Lee, Hyoun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.1
    • /
    • pp.51-66
    • /
    • 2002
  • The purpose of this study is to analyze the geomorphological environment changes of tidal flat in the Cheonsu Bay. Especially, it centers on the changes in the sedimentary environment using remote sensing data. Multi-temporal Landsat data and topographic maps were used in this study. The results are summarized as follows: the tidal flat of Cheonsu Bay changes in many ways depending on the direction of the tidal current. In the neighborhood of Ganwoldo, the scale of the tidal flat has continuously been expanded due to the superiority of sedimentation after a tide embankment was built. When we analyzed the grain size of sediments and implemented in-situ field survey, it was found that the innermost part of the bay consists of a mud flat, with the midway part mixed flat, and the nearest part to the sea sand flat. On the other hand, in the neighborhood of Seomot isle and its beach, sedimentation is superior in the eastern part whereas erosion is superior in the western part. In other words, the western coast of the beach is contacted with the open seas and under much influence of ocean wave. The eastern coast is placed at the entrance of the bay and has sand bar and tidal flat developed due to submarine deposits that are accumulated on the sea floor by the tidal current. In conclusions, remote sensing methods can be effectively applied for quantitative analysis of geomorphological changes in tidal flat, and it is expected that the proposed schemes can be applied to another geomorphological environments such as beach, sand dune, and sand wave.

Sediment Distributions and Depositional Processes on the Inner Continental Shelf Off the West Coast (Middle Part) of Korea (한국 서해 중부해역 대륙붕 퇴적물의 분포와 퇴적작용)

  • 박용안;최진용
    • 한국해양학회지
    • /
    • v.29 no.4
    • /
    • pp.357-365
    • /
    • 1994
  • The sediments on the continental shelf off the west coast (middle part) of Korea are divided into northern sandy deposits and southern muddy sediments, respectively. The sandy sediments consist dominantly of quartz and feldspar grains, representing mature-stage sediment in composition. Further-more, the presence of iron-stained quartz grain and glauconite does indicate that the sediments are similar to the relict sediments on the outer shelf of Yellow Sea and East China Sea. These sandy sediments are interpreted as a basal sands that were deposited during the transgression period due to sea-level rise after to last glacial maximum (LGM). The tidal deposits in the Namyang Bay, the west coast of Korea are divided vertically into the upper layer of muddy sediments and the lower layer of sandy sediments. the upper layer sediments contain abundant rock fragments, and are interpreted as the modern tetragenous sediments. The lower layer sediments, on the other hand, are rich in quartz and feldspar grains, representing high index of sediment maturity ratio. the lower layer sandy deposits show the presence of iron-stained.

  • PDF

Late Quaternary stratigraphy and sea-level change in the tidal flat of Gomso Bay, West Coast of Korea (한국 서해안 곰소만 조간대의 제 4기 층서와 해수면 변화)

  • 장진호;박용안
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.1 no.2
    • /
    • pp.59-72
    • /
    • 1996
  • The stratigraphy of the Gomso-Bay tidal flat consists of basement, preHolocene oxidized unit, and Holocene tidal sequence in ascending order. The oxidized unit is a yellowish brown stiff mud of the last stadial (or subglacial) stage before 12,000 yr B.P. This yellowish brown preHolocene unit does not contain any marine fossils, but contains plant roots, plant fragments, and also vertical and horizontal microfractures indicating soil-formation when exposed. It is regarded as interfluve deposits. The Holocene tidal sequence is composed of lower mud facies (upper-flat muds), upper sand and muddy sand facies (middle to lower-flat sands). This coarsening-upward and retrograding pattern of Holocene tidal deposits reflects a Holocene sea-level rise. The plots of $\^$14/C-age versus depth of dated samples (peats and shells) show that the sea level of 7,000 yr B.P. was located about 6.5 m below the present mean sea level, and the sea levels of 4,000 yr B.P. and 2,000 yr B.P. were also situated about 3 m and 2.5 m below the present mean sea level, respectively.

Physicochemical Characteristics and Formation Environments of the Ujeon Coastal Dune Depositsin Jeungdo (증도 우전 해안사구 퇴적층의 물리화학적 특성과 형성환경)

  • Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.2
    • /
    • pp.43-61
    • /
    • 2018
  • Heterogeneous sedimentary deposits with different soil colors and various degree of hardness are exposed in its foredune and tidal zone due to the effects of recently accelerated coastal erosion along the Ujeon Coast in Jeung-do, Shinan-gun. This study was conducted on the assumption that these sedimentary deposits were developed in different timing and environments. Thus, we can infer the geomorphic development processes of the area based on evidences like the physicochemical characteristics of each sedimentary layer. Several analysis of these sedimentary depositssuch as grain size analysis, X-ray Fluorescence Measurement (XRF), and Loss on ignition (LOI) were performed on central (Ujeon A) and southern (Ujeon B) parts of the Ujeon Coast. I found that the foredune sedimentary deposits have four stages of geomorphic development processes. In the initial stage of development, during the peak of the Last Interglacial Period (MIS 5e), basal deposits were accumulated in the low-energy environment of subtidal zones. In the second stage, during the Last Glacial Period (MIS 4~MIS 2), eolian sedimentary layers were developed by terrestrial aeolian processes by which fine materials were transported from the Yellow Sea which became a dry land exposed by lowered sea level. In the third stage, various mechanism existed for the formation of each sedimentary layer. In the region of Ujeon A, sedimentary layers were developed in the littoral zone environment dominated by marine processes during the maximum phase of transgression in the Holocene. Meanwhile, the region of Ujeon B began to form eolian sedimentary layers during MIS 2. In the last stage, thick coastal dune deposits, covered all over the Ujeon Coast. During the late Holocene (0.7~0.6 ka), terrestrial processes kept dominating the region, developing typical eolian sedimentary layers.

Sedimentary Characteristics and Evolution History of Chenier, Gomso-Bay tidal Flat, Western Coast of Korea (황해 곰소만 조간대에 발달한 Chenier의 퇴적학적 특성과 진화)

  • 장진호;전승수
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.212-228
    • /
    • 1993
  • A chenier, about 860 m long, 30 to 60 m wide and 0.6∼1.6 m high, occurs on the upper muddy tidal flat in the Gomso bay, western coast of Korea, It consists of medium to fine sands and shells with small amounts of subangular gravels. Vertical sections across the chenier show gently landward dipping stratifications which include small-scale cross-bedded sets. the most probable source of the chenier is considered to be the intertidal sandy sediments. Vibracores taken along a line transversing the tidal flat reveal that the intertidal sand deposits are more than 5 m thick near the low-water line and become thinner toward the chenier. The most sand deposits are undertrain by tidal muds which occur behind the chenier as salt marsh deposits. C-14 age dating suggests that the sand deposits and the chenier are younger than about 1,800 years B.P. The chenier has originated from the intertidal sand shoals at the lower to mid sand flat, and has continuously moved landward. A series of aerial photographs (1967∼1989) reveal that intertidal sand shoals (predecessor of the western part of chenier) on the mid flat have continuously moved landward during the past two decades and ultimately attached to the eastern part of the chenier already anchored at the present position in the late 1960s. Repeated measurements (four times between 1991 and 1992) of morphological changes of the chenier indicate that the eastern two thirds of the chenier, mostly above the mean high water, has rarely moved whereas the western remainder below the mean high water, has moved continuously at a rate of 0.5 m/mo during the last two years (1991∼1992). This displacement rate has been considerably accelerated up to 1.0 m/mo in winter, and during a few days of typhoon in the summer of 1992 the displacement amounted to about 8∼11 m/mo for the entire chenier. these facts suggest that macro-tidal currents, coupled with winter-storm waves and infrequent strong typhoons, should play a major role for the formation and migration of chenier after 1,800 B.P., when the sea level already rose to the present position and thereafter remained constant.

  • PDF

Sedimentology and Geochemical Properties of Intertidal Surface Sediments of the Banweol Area in the Southern Part of Kyeonggi Bay, Korea (湖間帶 推積物의 地化學的 및 推積學的 性質(半月, 京畿灣))

  • Lee, Chang-Bok;Park, Yong-Ahn;Koh, Chul-Hwan
    • 한국해양학회지
    • /
    • v.20 no.3
    • /
    • pp.20-29
    • /
    • 1985
  • Sediment transport by tidal currents as well as the distribution and properties of intertial surface sediments are investigated using the data obtained from an anchor station on the main tidal channel and 56 tidal flat surface samples. Sedimentation in the intertidal zone appears to occur mainly during the spring tide period in this environment. The tidal flat can be classified into three depositional facies. The tidal flat deposits are ubiquitously bioturbated by various bottom dwelling organisms among which the crabs and polychaetes predominate. Average trace metal contents of the intertidal surface sediments are: 74.8 ppm co, 67.8 ppm Ni, 32.6 ppm Cu and 30.7 ppm Pb. Compared with the northen Kyeonggi Bay bottom sediments, these contents are significantly high, except for Pb.

  • PDF