• Title/Summary/Keyword: Tidal current turbine

Search Result 88, Processing Time 0.024 seconds

Dynamic Behavior of Floating Tidal Current Power Device Considering Turbine Specifications (터빈 특성을 고려한 부유식 조류발전장치의 운동성능 고찰)

  • Jo, Chul-Hee;Hwang, Su-Jin;Park, Hong-Jae;Kim, Myeong-Joo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.427-432
    • /
    • 2018
  • Tidal current power is one of the energy sources of the ocean. Electricity can be generated by converting the flow energy of the current into the rotational energy of a turbine. Unlike tidal barrage, tidal current power does not require dams, which have a severe environmental impact. A floating-type tidal current power device can reduce the expensive support and installation cost, which usually account for approximately 41% of the total cost. It can also be deployed in relatively deep water using tensioned wires. The dynamic behavior of a floater and turbine force are coupled because the thrust and moment of the turbine affect the floater excursion, and the motion of the floater can affect the incoming speed of the flow into the turbine. To maximize the power generation and stabilize the system, the coupled motion of the floater and turbine must be extensively analyzed. However, unlike pile-fixed devices, there have been few studies involving the motion analysis of a moored-type tidal current power device. In this study, the commercial program OrcaFlex 10.1a was used for a time domain motion analysis. In addition, in-house code was used for an iterative calculation to solve the coupled problems. As a result, it was found that the maximum mooring load of 200 kN and the floater excursion of 5.5 m were increased by the turbine effect. The load that occurred on the mooring system satisfied the safety factor of 1.67 suggested by API. The optimum mooring system for the floating tidal current power device was suggested to maximize the power generation and stability of the floater.

Efficiency Assessment of Turbine for Tidal Current Power Plant by In-Field Experimental Test (현장계측에 의한 조류 발전용 수차의 효율 평가)

  • Han, Sang-Hun;Lee, Kwang-Soo;Yum, Ki-Dai;Park, Woo-Sun;Park, Jin-Soon;Yi, Jin-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.517-520
    • /
    • 2006
  • The Korean peninsula has a number of coastal sites where the rhythmic rising and lowering of water surface due to tides results in strong tidal current. The kinetic energy of these currents can be efficiently exploited by use of tidal current turbines. The pilot tidal current power plant is to be constructed at the Uldolmok narrow channel between J info and Haenam, Our ins next Year, and extensive coastal engineer ing research works have been carried out. This paper describes and analyzes some observation results of field test about the efficiency of Helical turbine for tidal current power plant. The efficiency of turbine, which is diameter 2.2m and height 2.5m, is evaluated meximum RPM, torque, and current velocity. The tested turbines had the maximum efficiencies of the bounds of 25 to 35% in the current velocity range between 1.4 and 2.6 m/s. This result shows that the pilot tidal current power plant needs three helical turbines with diameter 3.0m and height 3.6m to produce electric power 500kW.

  • PDF

Design and Performance Evaluation of the Savonius Tidal Current Turbine (항력식 조류발전 터빈의 최적 형상 설계 및 유동 수치해석을 통한 성능 평가)

  • Jo, Chul-Hee;Ko, Kwang-Oh;Lee, Jun-Ho;Lee, Kang-Hee
    • New & Renewable Energy
    • /
    • v.8 no.2
    • /
    • pp.6-13
    • /
    • 2012
  • Due to global warming, the need to secure an alternative resource has become more important nationally. Having very strong current on the west coast with up to 10 m tidal range, there are many suitable site for the application of TCP (Tidal Current Power) in Korea. On the south west regions between many islands that create strong current in the narrow channels. The rotor is one of the essential components which can convert tidal current energy into rotational energy to generate electricity. The design optimization of rotor is very important to maximize the power production. The performance of rotor can be determined by various parameters including number of blades, shape, sectional size, diameters and etc. This paper introduces the multi-layer vertical axis tidal current power system which can be applied to offshore jetties and piers effectively. Various cases of VAT turbine were designed. Specifically, the number of blades and turbine shape are changed in several cases. Also, performance analysis was carried out by CFD.

Critical Limits of Commercial Diving on the Construction of Tidal Current Power in Jangjuk Channel (장죽수로 조류발전건설시 작업특성에 따른 산업잠수 작업한계)

  • Kim, Won-Seok
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.3
    • /
    • pp.733-742
    • /
    • 2013
  • The Korea has significant tidal current energy resources, but it is so hard to work underwater for tidal turbine installation. Therefore commercial diving work is very important for tidal current generator. Also, Jangjuk channel is vary famous as proper area to generate tidal current energy. Nevertheless, no one is studied about characteristics of commercial diving works with installation of tidal current generator. The purpose of this study is to introduce commercial diving with work types and investigate critical limits of diving working under the conditions, which are working only to minutes at slack tide during the neap tide. As the results, work types are five as like mooring installation, OMAS(Offshore Maintenance Access System), support structure installation, cable and turbine installation. Here, the original construction period is expected about 4 months, but the construction take 18 months to complete. The cause of extends construction period is insufficiency of researching tidal current conditions at the site and ignorance of slack tide which need to secure diving working time. Total diving working times are 110th during 18 months, the highest percentage of diving times is turbine installation about 43.6 %, and cable, mooring installation and support structure construction are 27.3 %, 15.5 %, 13.6 %, respectively. On the basis of this study, estimation of times of commercial diving is possible with work types of tidal current power, and has a significance as basic data to determining construction period.

Performance Estimation of a Tidal Turbine with Blade Deformation Using Fluid-Structure Interaction Method

  • Jo, Chul-Hee;Hwang, Su-Jin;Kim, Do-Youb;Lee, Kang-Hee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-84
    • /
    • 2015
  • The turbine is one of the most important components in the tidal current power device which can convert current flow to rotational energy. Generally, a tidal turbine has two or three blades that are subjected to hydrodynamic loads. The blades are continuously deformed by various incoming flow velocities. Depending on the velocities, blade size, and material, the deformation rates would be different that could affect the power production rate as well as turbine performance. Surely deformed blades would decrease the performance of the turbine. However, most studies of turbine performance have been carried out without considerations on the blade deformation. The power estimation and analysis should consider the deformed blade shape for accurate output power. This paper describes a fluid-structure interaction (FSI) analysis conducted using computational fluid dynamics (CFD) and the finite element method (FEM) to estimate practical turbine performance. The loss of turbine efficiency was calculated for a deformed blade that decreased by 2.2% with maximum deformation of 216mm at the blade tip. As a result of the study, principal causes of power loss induced by blade deformation were analysed and summarised in this paper.

Design Load Analysis of Current Power Rotor and Tower Interaction

  • Jo, Chul H.;Lee, Kang-Hee;Hwang, Su-Jin;Lee, Jun-Ho
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.164-168
    • /
    • 2013
  • Tidal-current power is now recognized as a clean power resource. The turbine blade is the fundamental component of a tidal current power turbine. The kinetic energy available within a tidal current can be converted into rotational power by turbine blades. While in service, turbine blades are generally subjected to cyclic fatigue loading due to their rotation and the rotor-tower interaction. Predicting the fatigue life under a hydrodynamic fatigue load is very important to prevent blade failure while in service. To predict the fatigue life, hydrodynamic load data should be acquired. In this study, the vibration characteristics were analyzed based on three-dimensional unsteady simulations to obtain the cyclic fatigue load. Our results can be applied to the fatigue design of horizontal-axis tidal turbines.

The Wake Characteristics of Tidal Current Power Turbine (수평축 조류발전 후류 특성 및 발전 효율 분석)

  • Jo, Chulhee;Lee, Kanghee;Lee, Junho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.163.2-163.2
    • /
    • 2011
  • Due to global warming, the need to secure an alternative resource has become more important nationally. Due to the high tidal range of up to 9.7m on the west coast of Korea, numerous tidal current projects are being planned and constructed. To extract a significant quantity of power, a tidal current farm with a multi-arrangement is necessary in the ocean. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system, and its performance is determined by various design variables. The power generation is strongly dependent on the size of the rotor and the incoming flow velocity. However, the interactions between devices also contribute significantly to the total power capacity. Therefore, rotor performance considering the interaction problems needs to be investigated for generating maximum power in a specific field. This paper documents the characteristics of wake induced by horizontal axis tidal current power turbine.

  • PDF

Integrated Power System Combining Tidal Power and Ocean Current Power (조력발전과 해류발전을 겸하는 통합발전시스템)

  • Jang, Kyung-Soo;Lee, Jung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.270-273
    • /
    • 2008
  • The integrated power system combining a tidal power plant and two ocean current power parks is suggested. It is characterized by the set up of an ocean current power park in the lake side by installing a number of ocean current turbines generating electricity by using sea water flow discharged into the lake side from the turbine generator of a tidal power plant and an ocean current power park in the sea side by installing a number of ocean current turbines generating electricity by using sea water flow exiting into the sea side through the sluice gate from the lake side. The vision of the integrated power system is demonstrated by the simple theory and simulation results of the SIWHA Tidal Power Plant. And it is shown that the newly proposed integrated power system combining tidal power and ocean current power can produce very high economical benefits.

  • PDF

HAT Tidal Current Turbine Design and Performance Test with Variable Loads (조류발전용 수평축 터빈의 형상설계 및 가변 부하를 이용한 성능실험)

  • Jo, Chul-Hee;Rho, Yu-Ho;Lee, Kang-Hee
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • Due to a high tidal range of up to 10 m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The turbine, which initially converts the tidal energy, is an important component because it affects the efficiency of the entire system. Its performance is determined by design variables such as the number of blades, the shape of foils, and the size of a hub. To design a turbine that can extract the maximum power on the site, the depth and duration of current velocity with respect to direction should be considered. Verifying the performance of a designed turbine is important, and requires a circulating water channel (CWC) facility. A physical model for the performance test of the turbine should be carefully designed and compared to results from computational fluid dynamics (CFD) analysis. In this study, a horizontal axis tidal current turbine is designed based on the blade element theory. The proposed turbine's performance is evaluated using both CFD and a CWC experiment. The sealing system, power train, measuring devices, and generator are arranged in a nacelle, and the complete TCP system is demonstrated in a laboratory scale.

PHLIS-Based Characteristics Analysis of a 2 MW Class Tidal Current Power Generation System (PHILS 기반 2 MW급 조류발전시스템 특성 분석)

  • Go, Byeong Soo;Sung, Hae Jin;Park, Minwon;Yu, In Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.665-670
    • /
    • 2014
  • In this paper, characteristics of a tidal current power generation system are analysis using power hardware-in-the-loop simulation (PHILS). A 10 kW motor generator set is connected to the real grid through a fabricated 10 kW back to back converter. A power control scheme is applied to the back to back converter. A 2 MW class tidal current turbine is modeled in real time digital simulator (RTDS). Generating voltage and current from the 10 kW PMSG is applied to a 2 MW class tidal current turbine in the RTDS using PHILS. The PHILS results depict the rotation speed, power coefficient, pitch angle, tip-speed ratio, and output power of tidal current turbine. The PHILS results in this paper can contribute to the increasing reliability and stability of the tidal current turbines connected to the grid using PHILS.