• Title/Summary/Keyword: Tidal Stream Device

Search Result 5, Processing Time 0.02 seconds

Tidal Farming Optimization around Jangjuk-sudo by Numerical Modelling

  • Nguyen, Manh Hung;Jeong, Haechang;Kim, Bu-Gi;Yang, Changjo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.54-62
    • /
    • 2016
  • This study presents an approach of tidal farming optimization using a numerical modelling method to simulate tidal energy extraction for 1MW scale tidal stream devices around Jangjuk-sudo, South Korea. The utility of the approach in this research is demonstrated by optimizing the tidal farm in an idealized scenario and a more realistic case with three scenarios of 28-turbine centered tidal array (named A, B and C layouts) inside the Jangjuk-sudo. In addition, the numerical method also provides a pre-processing calculation helps the researchers to quickly determine where the best resource site is located when considering the position of the tidal stream turbine farm. From the simulation results, it is clearly seen that the net energy (or wake energy yield which includes the impacts of wake effects on power generation) extracted from the layout A is virtually equal to the estimates of speed-up energy yield (or the gross energy which is the sum of energy yield of each turbine without wake effects), up to 30.3 GWh/year.

Design and Performance Evaluation of a 10kW Scale Counter-Rotating Tidal Turbine (10kW급 상반전 조류터빈의 설계와 성능에 관한 연구)

  • Hoang, Anh Dung;Yang, Chang-Jo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • This paper aims to present the design and performance evaluation of a counter-rotating tidal turbine using CFD and to compare its performance with single rotor. The device scale is 10kW and the rotating part consists of two rotors which rotate in opposite direction. Compared with conventional single rotor, the counter-rotating system shows higher power efficiency at high stream velocity but lower efficiency at low stream velocity. The added counter-rotated rotor together helps improve the energy absorption capacity but has influence on the upstream rotor that reduces its performance. In terms of power capture, the designed counter-rotating tidal turbine is more advantageous in high speed tidal condition.

HAT Tidal Current Rotor Performance as per various Design Parameter (조류발전 로터 설계변수에 따른 성능 검토)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.590-593
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. This paper introduces the experiment of rotor performance and also the effect of design parameter on the performance of HAT rotor by CFD.

  • PDF

Fundamental Study on the HAT Tidal Current Power Rotor Performance by CFD (CFD를 이용한 수평축 조류발전 로터 성능의 기초연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Chae, Kwang-Su;Rho, Yu-Ho;Song, Seung-Ho
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.3-8
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. The paper introduces the experiment of rotor performance and also the fundamental study on the characteristics of three different rotors and flow near the rotor by CFD.

  • PDF

Status and Feasibility Study on Tidal Energy Technology (조력에너지 기술 현황 및 경제성 분석)

  • Cho, Young-Beom;Wee, Jung-Ho;Kim, Jeong-In
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.103-115
    • /
    • 2010
  • Currently, many nations in the world make a strong effort to exploit the new and renewable energy. Tidal energy is the constant and regular power sources with higher and more stable quality compared to other renewable sources. The present paper reports the status of tidal energy analyzing its latest technology and development. In addition, a feasibility study on two types of tidal power plant(TPP) systems is conducted based on many assumptions, conditions and data involved in the Korea environment. The Sihwa and Uldolmok TPP are considered as the reference of tidal barrage(TB) and tidal in stream energy conversion(TISEC) type, respectively. While TB technology is currently mature and reliable, there still remain many environmental issues. Whereas, TISEC is recently received more attention due to its environmental friendly aspect. Therefore, the TISEC is believed to be very promising technology as the TPP. The unit electricity generation cost of Sihwa TPP is approximately 67.3 KRW/kWh. However, considering additional cost of Sihwa lake construction, it increases to 254 KRW/kWh. In Uldolmok, the unit electricity generation cost is calculated to be about 400 KRW/kWh, which is even higher than that of Sihwa TPP. This is ascribed to high cost of TISEC device and construction cost due to its technological infancy as well as relatively small power capacity. Nevertheless, the TISEC technology would be substantially developed in the future due to its many advantageous features.