• Title/Summary/Keyword: Tidal Stream

Search Result 113, Processing Time 0.023 seconds

Topography, Vertical and Horizontal Deformation In the Sulzberger Ice Shelf, West Antarctica Using InSAR

  • Kwoun Oh-Ig;Baek Sangho;Lee Hyongki;Sohn Hong-Gyoo;Han Uk;Shum C. K.
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • We construct improved geocentric digital elevation model (DEM), estimate tidal dynamics and ice stream velocity over Sulzberger Ice Shelf, West Antarctica employing differential interferograms from 12 ERS tandem mission Synthetic Aperture Radar (SAR) images acquired in austral fall of 1996. Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles acquired in the same season as the SAR scenes in 2004 are used as ground control points (GCPs) for Interferometric SAR (InSAR) DEM generation. 20 additional ICESat profiles acquired in 2003-2004 are then used to assess the accuracy of the DEM. The vertical accuracy of the OEM is estimated by comparing elevations with laser altimetry data from ICESat. The mean height difference between all ICESat data and DEM is -0.57m with a standard deviation of 5.88m. We demonstrate that ICESat elevations can be successfully used as GCPs to improve the accuracy of an InSAR derived DEM. In addition, the magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7cm and it agrees well within 3cm with predicted ones from tide models. Lastly, ice surface velocity is estimated by combining speckle matching technique and InSAR line-of-sight measurement. This study shows that the maximum speed and mean speed are 509 m/yr and 131 m/yr, respectively. Our results can be useful for the mass balance study in this area and sea level change.

Fundamental Study on the HAT Tidal Current Power Rotor Performance by CFD (CFD를 이용한 수평축 조류발전 로터 성능의 기초연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Chae, Kwang-Su;Rho, Yu-Ho;Song, Seung-Ho
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.3-8
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. The paper introduces the experiment of rotor performance and also the fundamental study on the characteristics of three different rotors and flow near the rotor by CFD.

  • PDF

Numerical and experimental investigation on the performance of three newly designed 100 kW-class tidal current turbines

  • Song, Mu-Seok;Kim, Moon-Chan;Do, In-Rok;Rhee, Shin-Hyung;Lee, Ju-Hyun;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.241-255
    • /
    • 2012
  • Three types of 100 kW-class tidal stream turbines are proposed and their performance is studied both numerically and experimentally. Following a wind turbine design procedure, a base blade is derived and two additional blades are newly designed focusing more on efficiency and cavitation. For the three designed turbines, a CFD is performed by using FLUENT. The calculations predict that the newly designed turbines perform better than the base turbine and the tip vortex can be reduced with additional efficiency increase by adopting a tip rake. The performance of the turbines is tested in a towing tank with 700 mm models. The scale problem is carefully investigated and the measurements are compared with the CFD results. All the prediction from the CFD is supported by the model experiment with some quantitative discrepancy. The maximum efficiencies are 0.49 (CFD) and 0.45 (experiment) at TSR 5.17 for the turbine with a tip rake.

Rotor dynamic analysis of a tidal turbine considering fluid-structure interaction under shear flow and waves

  • Lass, Andre;Schilling, Matti;Kumar, Jitendra;Wurm, Frank-Hendrik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.154-164
    • /
    • 2019
  • A rotor dynamic analysis is mandatory for stability and design optimization of submerged propellers and turbines. An accurate simulation requires a proper consideration of fluid-induced reaction forces. This paper presents a bi-directional coupling of a bond graph method solver and an unsteady vortex lattice method solver where the former is used to model the rotor dynamics of the power train and the latter is used to predict transient hydrodynamic forces. Due to solver coupling, determination of hydrodynamic coefficients is obsolete and added mass effects are considered automatically. Additionally, power grid and structural faults like grid fluctuations, eccentricity or failure could be investigated using the same model. In this research work a fast, time resolved dynamic simulation of the complete power train is conducted. As an example, the rotor dynamics of a tidal stream turbine is investigated under two inflow conditions: I - shear flow, II - shear flow + water waves.

EVOLUTION OF DEBRIS OF A TIDALLY DISRUPTED STAR BY A MASSIVE BLACK HOLE: DEVELOPMENT OF A HYBRID SCHEME OF THE SPH AND TVD METHODS

  • LEE HYUNG MOK;KIM SUNGSOO
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.195-205
    • /
    • 1996
  • The evolution of the stellar debris after tidal disruption due to the super massive black hole's tidal force is difficult to solve numerically because of the large dynamical range of the problem. We developed an SPH (Smoothed Particle Hydrodynamics) - TVD (Total Variation Diminishing) hybrid code in which the SPH is used to cover a widely spread debris and the TVD is used to compute the stream collision more accurately. While the code in the present form is not sufficient to obtain desired resoultion, it could provide a useful tool in studying the aftermath of the stellar disruption by a massive black hole.

  • PDF

The Changing Process of the Tidal Landforms in Hampyeung Bay, Southwest Korea (함평만의 간석지 해안지형의 변화)

  • KIM, Nam-Shin;LEE, Min-Boo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.223-233
    • /
    • 2011
  • The aims of this study is about distribution characteristics of tidal coastal landforms, and that changing process in the Hampyeung Bay, which has a semi-enclosed bay like basin shape without inflow of stream, the mouth of open sea is narrow and forms with wide ends toward inland sea. The source of deposits are moved materials by tidal currents and from coastal slopes. Main landform elements of study area consist of tidal flat, tidal channels, intertidal sand bar, sea cliffs, and sea terrace. Tidal flats is classified with mud flat and mixed flat by grain size composition. Mud flats have developed at the shoreline area that tidal flat is closed to the continuity of gentle slope, and mixed flat developed at the foot of the sea cliffs and sea terraces. Quaternary deposits were identified in the coastal materials sedimented by the sea-level change. According to the analysis of grain size composition during last ten years, sands and silt has increased 2% and 6% respectively, clay has been decreased by 9%. The concaved tidal flats are colonized by salt plants. Areal changes of salt plants expanded near four times from 2.4km2 at the year 2001 to 9.3km2 at the year 2009. During the same periods, mean grain size became coarser from 6.5φ to 4.5φ at the salt plants area.

Parametric Numerical Study on the Performance of Helical Tidal Stream Turbines (헬리컬 터빈의 설계인자에 따른 성능 연구)

  • Han, Jun-Sun;Choi, Da-Hye;Hyun, Beom-Soo;Kim, Moon-Chan;Rhee, Shin-Hyung;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.114-120
    • /
    • 2011
  • The characteristics of a helical turbine to be used for tidal stream energy conversion have been numerically studied with varying a few design parameters. The helical turbines were proposed aiming at mitgating the well known poor cut-in characteristics and the structural vibration caused by the fluctuating torque, and the basic concept is introducing some twisting angle of the vertical blade along the rotation axis of the turbine. Among many potential controling parameters, we focused, in this paper, on the twisting angle and the height to diameter ratio of the turbine, and, based on the numerical experiment, We tried to propose a configuration of such turbine for which better performance can be expected. The three-dimensional unsteady RANS equations were solved by using the commercial CFD software, FLUENT with k-${\omega}$ SST turbulence model, and the grid was generated by GAMBIT. It is shown that there are a range of the twisting angle producing better efficiency with less vibration and the minimum height to diameter ratio above which the efficiency does not improve considerably.

Habitat Environments and Spatiotemporal Distribution of Clithon retropictum at the Estuaries of Bonggang and Miryoung Streams in the Southern Coast of Korea (남해안 봉강천과 미룡천 하구에서 기수갈고둥의 분포 및 서식지 환경 특성)

  • Jang, Keon Gang;Kim, Min-Seop;Jo, Soo-Gun;Yih, Wonho;Kim, Hyung Seop
    • Ocean and Polar Research
    • /
    • v.43 no.3
    • /
    • pp.127-140
    • /
    • 2021
  • At the estuaries of Bonggang and Miryong streams in the Korean southern coast, the spatiotemporal distribution and habitat environment of a nerite snail, Clithon retropictum (Gastropoda: Neritidae), which has been assigned as a legally protected species of Korea, were explored. Physicochemical environmental factors such as water temperature, salinity, tidal level distribution as well as biotic environments (chlorophyll-a concentration and epilithic microalgae composition) were monitored every month. The relationships between the environmental factors and spatiotemporal distribution of the nerite snail population were analyzed. Water temperature, salinity, and water level varied by season and lunar tidal rhythm. The spatiotemporal distribution of the nerite snail was mostly related to water salinity. Among epilithic algae which were the priority prey of snails, blue-green algae and green algae dominated in summer and autumn, while diatoms predominated during winter and spring. Chlorophyll-a concentration was highly and positively correlated with the population density of the nerite snail. The correlation coefficients were different depending on the taxon (Family) of epilithic algae. The mean population density was 302.2 inds m-2 and 271.8 inds m-2 in Bonggang Stream and Miryong Stream, respectively. The egg capsules of the nerite snail in the two habitats were observed from March (in Bonggang Stream) or April (in Miryong Stream) to August, and newly hatched juveniles recruited in the habitats from August were assessed with regard to frequency distributions of shell width. The occurrence of large-sized snails in upper stream reaches of both Bonggang and Miryong indicated the movement of spats from the mouth to the upper reaches during the whole life cycle.

Status and Feasibility Study on Tidal Energy Technology (조력에너지 기술 현황 및 경제성 분석)

  • Cho, Young-Beom;Wee, Jung-Ho;Kim, Jeong-In
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.103-115
    • /
    • 2010
  • Currently, many nations in the world make a strong effort to exploit the new and renewable energy. Tidal energy is the constant and regular power sources with higher and more stable quality compared to other renewable sources. The present paper reports the status of tidal energy analyzing its latest technology and development. In addition, a feasibility study on two types of tidal power plant(TPP) systems is conducted based on many assumptions, conditions and data involved in the Korea environment. The Sihwa and Uldolmok TPP are considered as the reference of tidal barrage(TB) and tidal in stream energy conversion(TISEC) type, respectively. While TB technology is currently mature and reliable, there still remain many environmental issues. Whereas, TISEC is recently received more attention due to its environmental friendly aspect. Therefore, the TISEC is believed to be very promising technology as the TPP. The unit electricity generation cost of Sihwa TPP is approximately 67.3 KRW/kWh. However, considering additional cost of Sihwa lake construction, it increases to 254 KRW/kWh. In Uldolmok, the unit electricity generation cost is calculated to be about 400 KRW/kWh, which is even higher than that of Sihwa TPP. This is ascribed to high cost of TISEC device and construction cost due to its technological infancy as well as relatively small power capacity. Nevertheless, the TISEC technology would be substantially developed in the future due to its many advantageous features.

SIMULATIONS OF THE INTERACTING MAGELLANIC SYSTEM

  • GARDINER LANCE T.;NOGUCHI MASAFUMI
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.93-94
    • /
    • 1996
  • The Galaxy and the Large and Small Magellanic Clouds (LMC and SMC respectively) form a triple system of mutually interacting galaxies. We have carried out a set of N-body simulations on the gravitational interaction of the SMC with the Galaxy and the LMC in order to model prominent features such as the Magellanic Stream, the inter-Cloud Bridge, and the large depth of the SMC which are thought to be products of the tidal interactions among the members of this system.

  • PDF