• Title/Summary/Keyword: Tidal Energy

Search Result 431, Processing Time 0.019 seconds

Development Trends of Tidal Current Energy and Its Test Bed (조류에너지의 이용기술)

  • Yang, Changjo;Hoang, T.G.
    • Vacuum Magazine
    • /
    • v.3 no.2
    • /
    • pp.11-16
    • /
    • 2016
  • Tidal current energy is the most interesting renewable resources that have been less harnessed. Korea has globally outstanding tidal current energy resources and it is highly needed to develop a tidal current energy conversion system. It is reported that the total amount of available tidal current energy is approximately 6GW in Korea. A good tidal site candidate is required a large amount of fast moving water, bathymetry and seabed properties, no conflicts with other users and is close to a load and grid interconnection. In this review, we summarized the results of R&D projects regarding tidal current resources, utilization projects and demonstration test bed.

Review on tidal stream energy and blade designs for tropical site conditions and a look at Philippines' future prospects

  • Mark Anthony Rotor;Hamid Hefazi;Nelson Enano, Jr.
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.247-268
    • /
    • 2023
  • Tidal stream energy extraction remains a site-specific resource due to the "first generation" criteria requiring high-velocity tidal streams. Most studies on tidal energy and turbine blade design heavily focus on installation sites with higher velocity conditions that are non-existent in tropical countries such as the Philippines. To shorten this gap, this review paper tackles tidal turbine design considerations for low-energetic regions such as the tropics. In-depth discussions of operating principles, methods of analysis, and designs of tidal turbine blades are presented. Notable tidal stream projects around the world are also mentioned in the paper. Also, it provides a perspective on the potential of this renewable energy to produce electricity for various sites in the Philippines. Finally, the paper emphasizes the need for new tidal turbine blade designs to be viable in tropical regions, such as the Philippines.

Tidal Farming Optimization around Jangjuk-sudo by Numerical Modelling

  • Nguyen, Manh Hung;Jeong, Haechang;Kim, Bu-Gi;Yang, Changjo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.54-62
    • /
    • 2016
  • This study presents an approach of tidal farming optimization using a numerical modelling method to simulate tidal energy extraction for 1MW scale tidal stream devices around Jangjuk-sudo, South Korea. The utility of the approach in this research is demonstrated by optimizing the tidal farm in an idealized scenario and a more realistic case with three scenarios of 28-turbine centered tidal array (named A, B and C layouts) inside the Jangjuk-sudo. In addition, the numerical method also provides a pre-processing calculation helps the researchers to quickly determine where the best resource site is located when considering the position of the tidal stream turbine farm. From the simulation results, it is clearly seen that the net energy (or wake energy yield which includes the impacts of wake effects on power generation) extracted from the layout A is virtually equal to the estimates of speed-up energy yield (or the gross energy which is the sum of energy yield of each turbine without wake effects), up to 30.3 GWh/year.

Hydrofoil selection and design of a 50W class horizontal axis tidal current turbine model

  • Kim, Seung-Jun;Singh, Patrick Mark;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.856-862
    • /
    • 2015
  • Tidal current energy is an important alternative energy resource among the various ocean energy resources available. The tidal currents in the South-Western sea of Korea can be utilized for the development of tidal current power generation. Tidal power generation can be beneficial for many fishing nurseries and nearby islands in the southwest region of Korea. Moreover, tidal power generation is necessary for promoting energy self-sufficient islands. As tidal currents are always available, power generation is predictable; thus, tidal power is a reliable renewable energy resource. The selection of an appropriate hydrofoil is important for designing a tidal current turbine. This study concentrates on the selection and numerical analysis of four different hydrofoils (MNU26, NACA63421, DU91_W2_250, and DU93_W_210LM). Blade element momentum theory is used for configuring the design of a 50 W class turbine rotor blade. The optimized blade geometry is used for computational fluid dynamics (CFD) analysis with hexahedral numerical grids. Among the four blades, NACA63421 blade showed the maximum power coefficient of 0.45 at a tip speed ratio of 6. CFD analysis is used to investigate the power coefficient, pressure coefficient, and streamline distribution of a 50 W class horizontal axis tidal current turbine for different hydrofoils.

A Study on the Design of Tidal Current Farm in the Bunamgun-do (부남군도에서의 조류발전단지 설계에 관한 연구)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • Many efforts will have to be made on securing the stable supply of the energy due to the worldwide trend of controlling the utilization fossil fuels inducing global climate change. Renewable portfolio standard enforced to power companies over 500 MW capacity from 2012. Tidal current energy is one of the most interesting renewable and clean energy resources that have been less exploited. Especially, Korea has worldwide outstanding tidal current energy resources and it is highly required to develop a tidal current energy conversion system(TECS) in coastal region. So, we examine a tidal in-stream energy using a numerical model and estimate a tidal current potential for commercialization of tidal current power plant in the sea of the Bunamgun-do. Available tidal energy resources is also analytically estimated using a tidal farm method and the annual energy production of an optimal TECS arrays will be calculated with taking into account interference of lateral and longitudinal spacing.

A Study on Energy Extraction from Tidal Currents

  • Hoang, Anh Dung;Yang, Chang-Jo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.79-79
    • /
    • 2011
  • The oceans are an untapped resource, capable of making a major contribution to our future energy needs. In the search for a non polluting renewable energy source, there is a push to find an economical way to harness energy from the ocean. Tidal stream is one of ocean energy form that is being investigated as potential source for power generation. Tidal current turbines are therefore designed as conversion machinery to generate power from tidal currents. A study on energy extraction from tidal currents is presented in this paper.

  • PDF

Resource Assessment of Theoretical Potential of Ocean Energy in Korea (국내 해양에너지 이론적 잠재량 산정 연구)

  • HWANG, SUJIN;JO, CHULHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.5
    • /
    • pp.465-472
    • /
    • 2019
  • This paper describes the resource assessment of theoretical potential of ocean energy including tidal current energy, tidal range energy, wave energy and ocean thermal energy in Korea to provide reliable basis for feasible development plan of ocean energy. Because of different characteristics of each ocean energy resources, the resource assessment methods were established considering characteristics of each ocean energy resources. The coastal region of Korea has been divided into 10 regions. The results show that tidal current energy is abundant in Incheon-Gyunggi and Jeollanam-do and tidal range energy is abundant in Incheon-Gyunggi. And wave energy is abundant in Jeollanam-do, Jeju and Gyeongsangbuk-do and there is ocean thermal energy in Gangwon-do and Gyeongsangbuk-do.

A Study on Power Performance of a 1kW Class Vane Tidal Turbine

  • Yang, Changjo;Nguyen, Manh Hung;Hoang, Anh Dung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.143-151
    • /
    • 2015
  • Recently, tidal current energy conversion is a promising way to harness the power of tides in order to meet the growing demands of energy utilization. A new concept of tidal current energy conversion device, named Vane Tidal Turbine (VTT), is introduced in this study. VTT has several special features that are potentially more advantageous than the conventional tidal turbines, such as propeller type tidal turbines. The purpose of this study on VTT is to analyze the possibility of extracting the hydrokinetic energy of tidal current and converting it into electricity, and evaluate the performance of turbines for various numbers of blades (six, eight and twelve) using Computational Fluid Dynamics (CFD). At various tip-speed ratios (TSR), the six-bladed turbine obtains the highest power and torque coefficients, power efficiency is up to 28% at TSR = 1.89. Otherwise, the twelve blade design captures the smallest portion of available tidal current energy at all TSRs. However, by adding more blades, torque extracted from the rotor shaft of twelve-bladed turbine is more uniform due to the less interrupted generation of force for a period of time (one revolution).

An Evaluation for Predicting the Far Wake of Tidal Turbines

  • Yang, C.J.;Hoang, A.D.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.155-156
    • /
    • 2012
  • In the modern age, as man's demand of energy is continuously grew, tidal becomes one of the sustainable energy sources that have been investigating thoroughly recently. Tidal turbine has proved high potential as a future power-generating device. To effectively capture tidal energy on site, a group of tidal turbines should be used and positioned in some formation with proper size and space so that energy can be absorbed from multiple point. Thus, the turbines together with the flow filed becomes a huge domain, a tidal farm. So, it becomes more convenient if a whole turbine farm is simulated by means of actuator discs since the time and cost for analysis can be reduced. This paper aims to evaluate the operating performance (power efficiency and energy restoration rate), mutual influence (for different longitudinal and lateral spaces), the influence of velocity profiles, turbulence intensity and the far wake characteristic of tidal turbines operating in farm formation. The results of this study help contributing to the present development of tidal turbine as the future potential energy conversion machinery.

  • PDF

GIS Data Modeling Plan for Tidal Power Energy Development in Incheon Bay of Korea (인천만 조력에너지 개발을 위한 GIS 데이터모델링)

  • Oh, Jung-Hee;Choi, Hyun-Woo;Park, Jin-Soon;Lee, Kwang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.166.2-166.2
    • /
    • 2011
  • Incheon Bay of Korea is one of the most famous regions for high tidal range. Ministry of Land, Transport and Maritime Affairs(MLTM) has implemented preliminary investigation for tidal power energy development in this area since 2006. Through field observations, various kinds of marine data consisting of depth and geography, marine weather, tidal currents, wave, seawater characteristics, geology, marine ecosystem and marine environment were gathered. To use these data efficiently for the determining of feasibility of developing and appropriateness of project scale, spatial data management and application system is essential. Therefore, in this study, the concept, methodology and procedure of spatial data modeling are defined for tidal energy development. Spatial data modeling consists of essential model relating to tidal energy directly and optional model including environmental factors. Essential model is composed with fundamental elements like as depth, geography, and several numerical modeling results(tide, tidal current, wave).

  • PDF