• Title/Summary/Keyword: Tidal Dyke

Search Result 39, Processing Time 0.023 seconds

Changes in Benthic Macrofauna of the Saemangeum Tidal Flat as Result of a Drastic Tidal Reduction (급격한 조석 감소에 의한 새만금 갯벌 대형저서동물 변화)

  • Koo, Bon-Joo;Shin, Sang-Ho;Lee, Seok
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.485-495
    • /
    • 2008
  • Tidal ranges of inner Saemangeum were largely reduced after the final dyke enclosure, resulting in the former tidal flats becoming either permanently exposed, still influenced by changing tide, or permanently submerged. The effect of reduced tidal range on survival and population stability of tidal flat macrofauna were investigated at three shifted habitats after the dyke completion. At the exposed area, several species survived for 80 days after the dyke enclosure. However, within 120 days, all macrofauna died off due to the elevated temperature during summer. At the intertidal area, some species were maintained until 170 days after the dyke enclosure with a large decrease of the faunal abundance. Species of the submerged area were seen to be more tolerant of the changed environments. The opportunistic species, such as Sinocorophium sinensis, Theora fragilis and Pseudopolydora Kempi, were massively introduced into the submerged area after the dyke enclosure, in which the benthic ecosystem was severely disturbed.

Physical Environment Changes in the Keum River Estuary by the Dyke Gate Operation: I. Mean Sea Level and Tide (하구언 수문작동으로 인한 금강 하구역의 물리적 환경변화: I. 평균해수면과 조석)

  • Kwon, Hyo-Keun;Lee, Sang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.93-100
    • /
    • 1999
  • Analyzing the tide data taken at Kunsan inner and Outer ports, non-tidal and mean sea level and harmonic constants of major constituents are investigated to examine the effects of the dyke gate operation on the sea level change in Keum River estuary. Non-tidal and annual mean sea levels decrease at Kunsan Inner and Outer ports after the dyke gate operation, especially showing an abrupt drop of non-tidal sea level at Kunsan Inner port. This non-tidal sea level drop results in the mean sea level gradient change between the inner and outer port, which can be mainly explained in terms of the decrease of river discharge from the dyke. Amplitudes of the $M_2$ and $S_2$ tides at the Inner port increase after the dyke gate operation, showing an abrupt jump, and phases of both tides slightly decrease. Amplitude and phase of the $K_1$ and $O_1$ tides show slight changes after the dyke gate operation. This significant change of semi diurnal tide amplitude is believed as a result of superposition of incident tidal wave and reflected tidal wave from the dyke.

  • PDF

Changes in Macrobenthic Community Structure on Gunsan Tidal Flat after the Closing of the Saemangeum 4th Dyke (새만금 4호 방조제 연결 후 군산갯벌 대형저서동물군집 변화)

  • Koo, Bon-Joo;Shin, Sang-Ho;Woo, Han-Jun;Kim, Eun-Soo;Je, Jong-Geel
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.497-507
    • /
    • 2008
  • With the reduction of tidal currents by the closing of the Saemangeun 4th dyke, sedimentary environments on the Gunsan tidal flat, the nearest inner flat from the 4th dyke, has been severely changed, which might affect macrobenthic assemblages on the habitats. In order to investigate changes in macrobenthic community structure on Gunsan tidal flat, field surveys were seasonally conducted at seven stations from April 2002 to November, 2005. Sedimentary facies on the study area were shifted into muddominant facies. The fine sediment has been greatly deposited on the tidal flat with accumulation of organic materials after closing the water passage of 4th dyke section. These drastic variations in environments gave rise to change in macrobenthic community structure. Since the closure of the 4th dyke, the number of species of macrobenthos has gradually decreased. And the filter feeders and sand-favored species such as Urothoe convexa, Macrophthalmus dilatatus, Umbonium thomasi, and Mactra veneriformis have been replaced by the deposit feeders such as Macrophthalmus japonicus and Ilyoplax pingi. MDS ordination based on Bray-Curtis similarity from forth-root transformed species abundance data showed that the macrobenthic communities have passed through three succession stages from 2002 to 2005. During the third stage of 2005 opportunistic species such as Prionospio japonica, Heteromastus filiformis and Sinocorophium sinensis increased in population on the tidal flat.

Changes of Sedimentary Environment in the Saemangeum Tidal Flat on the West Coast of Korea (새만금 갯벌의 퇴적환경 변화)

  • Woo, Han-Jun;Choi, Jae-Ung;An, Soon-Mo;Kwon, Su-Jae;Koo, Bon-Joo
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.361-368
    • /
    • 2006
  • The Saemangeum tidal flat with an area of approxirnately $233km^2$ is one of the biggest estuarine tidal flats on the west coast of Korea. Because of its location in the estuary of Mangyeong and Dongjin Rivers, the tidal flat receives large amount of sediments. A 33-km long sea dyke, enclosing a coastal zone of $401km^2$, was constructed to reclaim tidal flat in the Saemangeum area. The dyke construction radically changes the local tidal current regime and estuarine circulation. These have an effect on sedimentary environments in the tidal flat. On the tidal flats of the study area net deposition occurred, but net erosion occurred near tidal channel in 2004. The comparison of topography and surface sediments in summer 2004 with those in summer 1988 before the dyke construction showed that elevation increased with maximum 80cm and mean grain sizes were fining at Gwanghwal tidal flats. Sedimentary facies of two cores from Gwanghwal tidal flat revealed homogeneous layers in the upper part suggesting rapid deposition after the dyke construction. The sedimentation rate in Gwanghwal tidal flat(GW 6) using $^{210}Pb$ analysis was about 5.4cm/yr which is well matched with the sedimentation pattern revealed by change in topography.

Changes in Marine Environment by a Large Coastal Development of the Saemangeum Reclamation Project in Korea

  • Lie, Heung-Jae;Cho, Cheol-Ho;Lee, Seok;Kim, Eun-Soo;Koo, Bon-Joo;Noh, Jae-Hoon
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.475-484
    • /
    • 2008
  • The word 'Saemangeum' indicates an estuarine tidal flat in the southwestern part of the Korean peninsula. The Saemangeum Reclamation Project was launched as a national project in 1991 to reclaim a large coastal area of $401\;km^2$ by constructing a 33-km long dyke. The final dyke enclosure in April 2006 has transformed the tidal flat into lake and land. An integrated oceanographic study has been conducted since 2002 as a part of the Government Action Plan to monitor and assess changes in the marine environment. Prior to the dyke enclosure, the coastal environment in the Saemangeum was a complex system governed by tidal motion, estuarine processes, and coastal circulation of the Yellow Sea. The dyke construction has radically changed not only the estuarine tidal system inside the dyke, but also the coastal marine environment outside the dyke. Post to the dyke enclosure, subsequent changes such as red tide, hypoxia, and coastal erosion/deposition occur successively. Red tides appear almost the year round in the inner area. Even under the condition that the sluice gates are fully open, the water quality does not improve as much as the developers would expect, mainly due to the critical reduction of the hydrodynamic stirring power. We will introduce details of our monitoring program and significant changes in the Saemangeum marine environment, based on observations and model results.

Seepage Behavior of Sea Dyke Final Closure with Tidal Variation (조위변화에 따른 방조제 끝막이 사석단면의 침투거동)

  • Yoo, Jeon-Yong;Oh, Young-In;Kim, Hyun-Tae;Jeung, In-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.800-807
    • /
    • 2006
  • Sea dyke construction is simply defined that the cutting procedure of sea water flow. Sea dyke construction is more difficult than in-land construction because it’s placed on deep seabed and exposed sea wave attack. Especially, the final closure of sea dyke is most dangerous due to the fast velocity of tidal flow. The final closure section is consisted with vast rubble and heavy stone gabion, therefore the discharge velocity at land side of final close section is irregularly and sometime occur the fast discharge velocity. In this study, the seepage model test performed to evaluate seepage behavior with tidal variation of final closure and continuous sea dyke section such as discharge velocity, hydraulic gradient, and phreatic line. Based on the seepage model test results, the maximum discharge velocity of final closure section is 1.7m/sec. Also the local discharge velocity increment and vortex is occurred.

  • PDF

Accelerated Seaward Growth of Tidal Sand Bar during Giant Dyke Construction off the Mangyung River Mouth, West Coast of Korea

  • Lee, Hee-Jun;Choi, Kang-Won;Eo, Dae-Su;Chu, Yong-Shik
    • Journal of the korean society of oceanography
    • /
    • v.36 no.3
    • /
    • pp.72-82
    • /
    • 2001
  • The progress of giant dyke construction off the Mangyung and Donajin rivers, has yielded enormous impact on the estuarine environment, both hydrodynamically and sedimentologically. Especially the inter-dyke gap in the northern Saemankeum area, 4 km wide between Yamido and Piungdo, has acted as an artificial tidal inlet. Due to such a changed geometry, tidal regime has been reversed from being flood- to ebb-dominated with a directional change from NE-SW to E-W. As a result, a large tongue-like tidal sand bar (named Saemankeum Bar) has conspicuously grown seaward through the artificial tidal inlet. The Saemankeum Bar composed of well-sorted very fine sands (3.0-3.5${\phi}$) has grown at a rate of 1.63 km/yr for the past three yews (1996-1998). Such a rapid growth of the sand bar is attributed to enhanced sediment supply derived from the degradation of former tidal sand bars at the mouth of the Mangyung River. Eventually the reworking of the tidal sand bars also caused the pre-existing tidal channels to be wider, deeper and more straightened. All of these phenomena well examplify the critical effect of artificial modifications on the natural estuarine environments.

  • PDF

Topographical Changes and Textural Characteristics in the Areas Around the Saemangeum Dyke (새만금방조제 축조에 따른 지형 및 입도특성의 변화)

  • Lee, Hee-Jun;Jo, Hyung-Rae;Kim, Min-Ji
    • Ocean and Polar Research
    • /
    • v.28 no.3
    • /
    • pp.293-303
    • /
    • 2006
  • The topography of the sea floor and textural characteristics of surface sediments are documented in areas off sectors 1,2, and 4 of the Saemangeum dyke and inside the dyke. These were investigated during the years 2002 to 2005, when the dyke construction almost came to an end, and were compared with natural topographic analogs before the dyke construction from the maritime maps of 1982 and 1994. Along and across the dyke are a number of erosional troughs formed by intensified currents during the dyke construction. The sea floor off sector 4 has undergone gradual accumulation of sands moving from the north by currents varying in direction from normal to parallel to the dyke. This is in a strong contrast with a slight erosional environment prevailing over the sea floor before dyke construction. off sectors 1 and 2, a topography with an alterative pattern of erosional troughs and sand shoals develops normal to the dyke. Eroded materials from the troughs seem to have added to the sand shoals. As a result, the troughs, former natural tidal channels, have become increasingly deeper, whereas the sand shoals have become somewhat shallower. The sea floor inside the dyke has also been remarkably shallower with expanding tidal flats due to trapping by the dyke of continuous sediment input from the Dongjin and Mangyeong rivers. Sands, all of which are considered to have originated originally from the two rivers, dominate the entire Saemangeum area.

Sedimentologic Characteristics of Tidal Flat Sediments after the Construction of Sea Dyke in Kwangyang Bay, South Coast of Korea (호안 건설 후 광양만 조간대 퇴적물의 퇴적학적 특성)

  • Ryu, Sang-Ock;Sin, Yong-Sik
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.659-669
    • /
    • 2006
  • In Kwangyang Bay, the south coast of Korea, surface sediments and sedimentation rates have been investigated to understand the distribution and variation of tidal flat sediments after the construction of sea dyke. The mean grain size of the surface sediments during autumn is coarser, and decrease from winter to summer except for temporarily coarsening in the early summer. The depositional processes are prevalent in spring, while erosional processes are dominant in summer and autumn. This seasonal variation of sedimentary processes show similar results monitored from 2001 to 2003 before the construction of sea dyke. In the northern area of the bay, net annual sedimentation rates show similar results monitored from 2001 to 2003 before the construction of sea dyke. However, in the western area of the bay, net annual sedimentation rates change from erosion-dominated to deposition-dominated environments. It is considered that the western area of the bay is changed to erosion-dominated environments, as a result of the changes of hydrodynamic conditions, caused by sea dyke construction.

The Satellite Observation for Spatial Changes of Vegetation in Saemangum Tidal Flat (새만금 갯벌의 식생 공간변화에 대한 위성관측)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.150-156
    • /
    • 2014
  • The aim of this study is to detection of changed vegetation area of Saemangeum tidal flat with comparison of topography and surface sediments during the dyke construction. Sedimentary facies of four seasons of 2001 from inside Saemangeum tidal flat revealed homogeneous layers in the upper part, however near sea side tidal flat were detecting with carried out rapid sediment deposition during the dyke construction using satellite image spatial analysis. The sedimentation types inside Saemangeum tidal flat were classified with vegetation types, which were well matched with the sedimentation pattern revealed by change in vegetation patterns.