• Title/Summary/Keyword: TiO-N

Search Result 1,345, Processing Time 0.027 seconds

AFUNCTIONALGRADIENT-SIMULATEDMULTILAYERBENDERACTUATOR (경사기능특성을 모사한 적층 벤더 액츄에이터 특성)

  • Jeong, Soon-Jong;Koh, Hung-Huck;Ha, Mun-Su;Ha, Dea-Su;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.802-805
    • /
    • 2004
  • 압전 액츄에이터는 다른 종류의 액츄에이터와 비교할 때 높은 강성, 빠른 응답성의 우수한 특성을 가지고 있다. 벤더형 액츄에이터는 높은 변위의 장점을 가지나 높은 전기장과 기계적 부하인가시에는 내부 응력이 증가하므로서 신뢰성이 감소한다는 단점을 가지고 있다. 이러한 단점을 보완하기 위하여 여러 방법으로 내부 응력을 줄이려는 시도가 있으며 그중 하나는 경사기능 소재나 경사기능 구조를 가지는 액츄에이터의 개발이다. 본 연구에서는 경사기능 특성을 모사한 액츄에이터 구조를 제작하고 그 특성을 조사하였다. 두 가지의 압전상수 d31= - 220 pC/N, d31 =- 100 pC/N를 가지는 세라믹층을 적층하여 벤더형 액츄에이터의 특성을 관찰하였다. 그 결과 두 종류의 세라믹층으로 적층한 액츄에이터가 한가지 특성의 세라믹으로 제작한 액츄에이터 보다 전압인가시 20%이상의 우수한 변위 특성을 나타내었다. 이러한 변화는 내부 응력의 감소에 기인한 것으로 예상된다.

  • PDF

The Study of the Dielectric and Piezoeletric Properties of 0.05Pb(AlS12/3TWS11/3T)OS13T-0.95Pb(ZrS10.52TTiS10.48T)OS13T System Modified with MnOS12T and FeS12TOS13T (MnO2, Fe2O3 첨가에 따른 0.05Pb(Al2/3W1/3)O3-0.95Pb(Zr0.52Ti0.48)O3계의 유전 및 압전 특성에 관한 연구)

  • 윤석진;오현재;정형진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.508-516
    • /
    • 1992
  • In this study, dielectric and piezoelectric properties of 0.05Pb(AlS12/3TWS11/3T)OS13T-0.95Pb(ZrS10.52TTiS10.48T)OS13T system ceramics were investigated with respect to the variations of MnOS12T and FeS12TOS13T additions amounts. The results obtained in this study are summarized as follows: 1. As the amounts of MnOS12T and FeS12TOS13T are increased, tetragonality(c/a) and apparent density were decreased but grain size was increased, also the limits of solubility were revealed because pores were formed at the amounts of 0.3wt% MnOS12T and 0.5wt% FeS12TOS13T. 2. AS the increasing of amounts of MnOS12T and FeS12TOS13T, the temperature of phase transition(TS1cT) was decreased, and pemeability had maximum value at the amount of 0.3wt% MnOS12T but were sharply decreasd for the increasing FeS12TOS13T amounts. 3. As the amounts of MnOS12T and FeS12TOS13T are increased, the electro-mechanical coupling factor(kS1pT) was decreased from 60% to 41%, 19% respectively, but mechanical quality factor(QS1mT) had maximum values 720 for amount of 0.3wt% MnOS12T and 320 the amount of 0.5wt% FeS12TOS13T.

Amorphous Vanadium Titanates as a Negative Electrode for Lithium-ion Batteries

  • Lee, Jeong Beom;Chae, Oh. B.;Chae, Seulki;Ryu, Ji Heon;Oh, Seung M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.306-315
    • /
    • 2016
  • Amorphous vanadium titanates (aVTOs) are examined for use as a negative electrode in lithium-ion batteries. These amorphous mixed oxides are synthesized in nanosized particles (<100 nm) and flocculated to form secondary particles. The $V^{5+}$ ions in aVTO are found to occupy tetrahedral sites, whereas the $Ti^{4+}$ ions show fivefold coordination. Both are uniformly dispersed at the atomic scale in the amorphous oxide matrix, which has abundant structural defects. The first reversible capacity of an aVTO electrode ($295mAhg^{-1}$) is larger than that observed for a physically mixed electrode (1:2 $aV_2O_5$ | $aTiO_2$, $245mAhg^{-1}$). The discrepancy seems to be due to the unique four-coordinated $V^{5+}$ ions in aVTO, which either are more electron-accepting or generate more structural defects that serve as $Li^+$ storage sites. Coin-type Li/aVTO cells show a large irreversible capacity in the first cycle. When they are prepared under nitrogen (aVTO-N), the population of surface hydroxyl groups is greatly reduced. These groups irreversibly produce highly resistive inorganic compounds (LiOH and $Li_2O$), leading to increased irreversible capacity and electrode resistance. As a result, the material prepared under nitrogen shows higher Coulombic efficiency and rate capability.

ZnO Nanoparticle Based Dye-Sensitized Solar Cells Devices Fabricated Utilizing Hydropolymer at Low Temperature (저온에서 Hydropolymer를 이용한 ZnO 나노입자 염료 감응형 태양전지)

  • Kwon, Byoung-Wook;Son, Dong-Ick;Park, Dong-Hee;Yang, Jeong-Do;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.483-487
    • /
    • 2010
  • To fabricate $TiO_2$ nanoparticle-based dye sensitized solar cells (DSSCs) at a low-temperature, DSSCs were fabricated using hydropolymer and ZnO nanoparticles composites for the electron transport layer around a low-temperature ($200^{\circ}C$). ZnO nanoparticle with 20 nm and 60 nm diameter were used and Pt was deposited as a counter electrode on ITO/glass using an RF magnetron sputtering. We investigate the effect of ZnO nanoparticle concentration in hydropolymer and ZnO nanoparticle solution on the photoconversion performance of the low temperature fabricated ($200^{\circ}C$) DSSCs. Using cis-bis(isothiocyanato)bis(2,20 bipyridy1-4,40 dicarboxylato) ruthenium (II) bis-tetrabutylammonium (N719) dye as a sensitizer, the corresponding device performance and photo-physical characteristics are investigated through conventional physical characterization techniques. The effect of thickness of the ZnO photoelectrode and the morphology of the ZnO nanoparticles with the variations of hydropolymer to ZnO ratio on the photoconversion performance are also investigated. The morphology of the ZnO layer after sintering was examined using a field emission scanning electron microscope (FE-SEM). 60 nm ZnO nanoparticle DSSCs showed an incident photon-to-current conversion efficiency (IPCE) value of about 7% higher than that of 20 nm ZnO nanoparticle DSSCs. The maximum parameters of the short circuit current density ($J_{sc}$), the open circuit potential ($V_{oc}$), fill factor (ff), and efficiency ($\eta$) in the 60 nm ZnO nanoparticle-based DSSC devices were 4.93 mA/$cm^2$, 0.56V, 0.40, and 1.12%, respectively.

The Electrical Properties of Mutilayer Chip Capacitor with X7R by Addition of Rare-Earth Ions (Y2O3, Er2O3) using Design of Experiments (실험계획법을 적용한 X7R 적층 칩 커패시터의 희토류(Y2O3, Er2O3) 첨가에 따른 전기적 특성)

  • Yoon, Jung-Rag;Moon, Hwan;Lee, Heun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.216-221
    • /
    • 2010
  • Employing statistical design of experiments, the difference in doping behaviors of rare-earth ions and their effects on the dielectric property and microstructure of $BaTiO_3$-MgO-$MnO_2$-($Ba_{0.4}Ca_{0.6}$) $SiO_3-Re_2O_3$ (Re = $Y_2O_3$, $Er_2O_3$) system were investigated. Through the statistical analysis we have found that the amount of $Re_2O_3$ are significantly affecting on the dielectric properties. The $Re_2O_3$ improved the dielectric constant, dielectric loss and R*C constant, so the appropriate contents of $Y_2O_3$ and $Er_2O_3$ were 0.8 ~ 1.2 mol% and 0.8 ~ 1.3 mol%, respectively. The MLCC(mutilayer chip capacitor) with $2.0{\times}1.2{\times}1.2mm$ size and 475 nF was also suited for X7R with the above composition. It showed that the dielectric constant and RC constant were 2,839 and 3,675 ${\Omega}F$, respectively in the sintering condition at $1250^{\circ}C$ in $Po_2$ $10^{-7}$ Mpa.

Capacitance Properties of Nano-Structure Controlled Alumina on Polymer Substrate (폴리머 기판위에 형성된 나노구조제어 알루미나의 캐패시터 특성)

  • Jung, Seung-Won;Min, Hyung-Sub;Han, Jeong-Whan;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • Embedded capacitor technology can improve electrical perfomance and reduce assembly cost compared with traditional discrete capacitor technology. To improve the capacitance density of the $Al_2O_3$ based embedded capacitor on Cu cladded fiber reinforced plastics (FR-4), the specific surface area of the $Al_2O_3$ thin films was enlarged and their surface morphologies were controlled by anodization process parameters. From I-V characteristics, it was found that breakdown voltage and leakage current were 23 V and $1{\times}10^{-6}A/cm^2$ at 3.3 V, respectively. We have also measured C-V characteristics of $Pt/Al_2O_3/Al/Ti$ structure on CU/FR4. The capacitance density was $300nF/cm^2$ and the dielectric loss was 0.04. This nano-porous $Al_2O_3$ is a good material candidate for the embedded capacitor application for electronic products.

The Blanket Deposition and the Sputter Seeding Effects on Substrates of the Chemically Vapor Deposited Cu Films (Sputter Seeding을 이용한 CVD Cu 박막의 비선택적 증착 및 기판의 영향)

  • Park, Jong-Man;Kim, Seok;Choi, Doo-Jin;Ko, Dae-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.827-835
    • /
    • 1998
  • Blanket Copper films were chemically vapor deposited on six kinds for substrates for scrutinizing the change of characteristics induced by the difference of substrates and seeding layers. Both TiN/Si and {{{{ { SiO}_{2 } }}/Si wafers were used as-recevied and with the Cu-seeding layers of 40${\AA}$ and 160${\AA}$ which were produced by sputtering The CVD processes were exectued at the deposition temperatures between 130$^{\circ}C$ and 260$^{\circ}C$ us-ing (hfc)Cu(VTMS) as a precursor. The deposition rate of 40$^{\circ}C$ Cu-seeded substrates was higher than that of other substrates and especially in seeded {{{{ { SiO}_{2 } }}/Si substrate because of the incubation period reducing in-duced by seeding layer at the same deposition time and temperature. The resistivity of 160${\AA}$ Cu seeded substrate was lower then that of 40 ${\AA}$ because the nucleation and growth behavior in Cu-island is different from the behavior in {{{{ { SiO}_{2 } }} substrate due to the dielectricity of {{{{ { SiO}_{2 } }}.

  • PDF

Deposition Pressure Dependent Electric Properties of (Hf,Zr)O2 Thin Films Made by RF Sputtering Deposition Method

  • Moon, S.E.;Kim, J.H.;Im, J.P.;Lee, J.;Im, S.Y.;Hong, S.H.;Kang, S.Y.;Yoon, S.M.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1712-1715
    • /
    • 2018
  • To study the applications for ferroelectric non-volatile memory and ferroelectric memristor, etc., deposition pressure dependent electric the properties of $(Hf,\;Zr)O_2$ thin films by RF sputtering deposition method were investigated. The bottom electrode was TiN thin film to produce stress effect on the formation of orthorhombic phase and top electrode was Pt thin film by DC sputtering deposition. Deposition pressure was varied along with the same other deposition conditions, for example, sputtering power, target to substrate distance, post-annealing temperature, annealing gas, annealing time, etc. The structural and electric properties of the above thin films were investigated. As a result, it is confirmed that the electric properties of the $(Hf,\;Zr)O_2$ thin films depend on the deposition pressure which affects structural properties of the thin films, such as, structural phase, ratio of the constituents, etc.

High-Efficiency a-Si:H Solar Cell Using In-Situ Plasma Treatment

  • Han, Seung Hee;Moon, Sun-Woo;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok;Lee, Seungmin;Kim, Jungsu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.230-230
    • /
    • 2013
  • In amorphous or microcrystalline thin-film silicon solar cells, p-i-n structure is used instead of p/n junction structure as in wafer-based Si solar cells. Hence, these p-i-n structured solar cells inevitably consist of many interfaces and the cell efficiency critically depends on the effective control of these interfaces. In this study, in-situ plasma treatment process of the interfaces was developed to improve the efficiency of a-Si:H solar cell. The p-i-n cell was deposited using a single-chamber VHF-PECVD system, which was driven by a pulsed-RF generator at 80 MHz. In order to solve the cross-contamination problem of p-i layer, high RF power was applied without supplying SiH4 gas after p-layer deposition, which effectively cleaned B contamination inside chamber wall from p-layer deposition. In addition to the p-i interface control, various interface control techniques such as thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, multiple applications of thin i-layer deposition and H2 plasma treatment, H2 plasma treatment of i-layer prior to n-layer deposition, etc. were developed. In order to reduce the reflection at the air-glass interface, anti-reflective SiO2 coating was also adopted. The initial solar cell efficiency over 11% could be achieved for test cell area of 0.2 $cm^2$.

  • PDF

Characteristics of ZnO:Al thin films deposited with differentworking pressures (증착 압력에 따른 ZnO:Al 박막의 특성)

  • Kim, Seong-Yeon;Sin, Beom-Gi;Kim, Du-Su;Choe, Yun-Seong;Park, Gang-Il;An, Gyeong-Jun;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.49.2-49.2
    • /
    • 2009
  • 투명전극은 디스플레이, 태양전지와 같은 광전자 소자에 필수적이며, 지금까지 개발된 재료 중에는 ITO가 가장 투명하면서 전기전도도가 높고 생산성도 좋기 때문에 투명전극의 재료로 사용하고 있다. ITO는 낮은 비저항(${\sim}10^{-4}{\Omega}cm$) 과 높은 투과율 (~85 %), 상대적으로 넓은 밴드갭 에너지 (3.5 eV) 의특성과 같이 뛰어난 전기적 광학적 특성에 반해서 높은 원자재 가격, 불안정한 공급량 등으로 인한 문제점이꾸준히 제기되고 있다. 따라서 $In_2O_3$:Sn, ZnO:Al, ZnO:Ga, ZnO:F, ZnO:B, TiN 등과 같은 물질들로대체하려는 연구가 활발하게 진행되고 있다. ZnO는 ITO보다원자재의 수급이 원활하기 때문에 원가가 낮으며, 상대적으로 낮은 온도에서도 제작이 가능하다. 또한 화학적으로 안정적이므로 ZnO에 Al, Ga 등의 3족 원소를 도핑함으로써 낮은 비저항의 박막 제작이 가능하고, ITO 박막과 비교하여 etching이 쉬우며 기판과의 접착성이 좋으며, sputtering 공정시 plasma 분위기에서의 안정성이 뛰어나고 박막증착율이 높기 때문에 투명전극으로 적합한 재료이다. 본 연구에서는 cylindrical type의 Aldoping된 ZnO single target을 사용하여 박막 증착 압력의 변화를 주어 유리기판 위에 DC sputtering을 하였다. Fieldemission scanning electron microscope (FESEM)을 통해 ZnO:Al 박막의 표면의 형상과 두께를 확인하였으며, X-ray diffraction (XRD) 분석을 통해 박막의 결정학적 특성을 관찰하였다. 투명전극용 물질로서 ZnO:Al 박막의 적합성 여부를 확인하기 위하여 Van der Pauw 방법을 이용하여 박막의 비저항, 전자 이동도, 캐리어 농도를 측정하였으며, 박막의 기계적 성질 및 표면 접착성을 확인하기 위하여 nano-indentaion 분석을 하였다. 또한 UV-vis spectrophotometer를 이용하여 ZnO:Al 박막의 투과율을 분석하여 투명전극으로의 응용 가능성을 확인하였다.

  • PDF