• Title/Summary/Keyword: TiO2 photocatalyst

Search Result 235, Processing Time 0.028 seconds

Synthesis and Characteristics of Pd/r-TiO2 Nanotube Arrays Hetrojunction Photocatalyst (Pd/r-TiO2 나노튜브 이종결합 광촉매의 합성과 특성)

  • Lee, Jong-Ho;Lee, Young-Ki;Kim, Young-Jig;Jang, Kyung-Wook;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.14-22
    • /
    • 2022
  • To improve light absorption ability in the visible light region and the efficiency of the charge transfer reaction, Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst were synthesized. The reduced TiO2 nanotube photocatalyst was fabricated by anodic oxidation of Ti plate, followed by an electrochemical reduction process using applied cathodic potential. For TiO2 photocatalyst electrochemically reduced using an applied voltage of -1.3 V for 10 min, 38% of Ti4+ ions on TiO2 surface were converted to Ti3+ ion. The formation of Ti3+ species leads to the decrease in the band gap energy, resulting in an increase in the light absorption ability in the visible range. To obtain better photocatalytic efficiency, Pd nanoparticles were decorated through photoreduction process on the surface of reduced TiO2 nanotube photocatalyst (r10-TNT). The Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst exhibited enhanced photocurrent response, and high efficiency and rate constant for aniline blue degradation; these were ascribed to the synergistic effect of the new electronic state of the TiO2 band gap energy induced by formation of Ti3+ species on TiO2, and by improvement of the charge transfer reaction.

Comparison of OH radical generation depending on anatase to rutile ratio of TiO2 nanotube Photocatalyst (Anatase와 Rutile 결정상 비율에 따른 TiO2 nanotube의 OH radical 생성량 비교 연구)

  • Lee, Hyojoo;Lee, Yongho;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.550-556
    • /
    • 2019
  • This study was carried out to improve the photocatalytic reaction of TiO2 photocatalyst. During the photocatalytic reaction, OH radicals are generated and they have an excellent oxidation capability for wastewater treatment. To evaluate the OH radicals generated according to crystallographic structure of TiO2 nanotubes photocatalyst, a probe compound, 4-Chlorobenzoic acid was monitored to evaluate OH radical. Ultraviolet light was applied for photocatalytic reaction of TiO2. The 4-Chlorobenzoic acid solution was prepared at laboratory. TiO2 nanotube was grown on titanium plate by using anodization method. The annealing temperature for TiO2 nanotube was varied from 400 to 900 ℃ and the crystal forms of the TiO2 nanotube was analyzed. Depending on annealing temperature, TiO2 nanotubes have shown different crystal forms; 100% anatase (0 % rutile), 18.4 % rutile (81.6 % anatase), 36.6 % rutile (63.4 % anatase) and 98.6% rutile (1.4% anatase). As the annealing temperature increases, the rutile ratio increases. OH radical generation from 18.4 % rutile TiO2 nanotube plate was about 3.8 times higher than before annealing and 1.4 times higher than only 100 % anatase-TiO2 nanotube. The efficiency of the 18.4% rutile TiO2 nanotube was the best in comparison to TiO2 nanotube with 18.4 %, 36.6 % and 98.6 % rutile. As a result, photocatalytic ability of 18.4 % rutile-TiO2 nanotube plate was higher than 100 % anatase-TiO2 nanotube plate.

Preparation of C Doped TiO2 Photocatalyst Activating to Visible Irradiation and Investigation of Its Photocatalytic Activity (유성 볼밀법을 이용한 탄소 도핑 가시광 활성 TiO2 광촉매 제조 및 이의 특성 평가)

  • Yeo, In-Chul;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.281-288
    • /
    • 2010
  • A carbon doped $TiO_2$ (C-$TiO_2$) photocatalyst, which shows good photocatalytic activity to Ultraviolet irradiation and visible irradiation, was successfully prepared by co-grinding of $TiO_2$ with ethanol or Activated Carbon(C), followed by heat treatment at $200^{\circ}C$ in air for 60 min. Ethanol and C were used as a representative agent of liquid and solid for carbon doping. Their influence on improving photocatalytic ability and carbon doping degree was studied with degradation of methyl orange and XPS analysis. The product prepared by co-grinding of $TiO_2$ with Ethanol had Ti-C and C-O chemical bonds and showed higher photocatalytic activity than the product prepared by co-grinding of $TiO_2$ with C, where just C-O chemical bond existed. As a result, mechanochemical route is useful to prepare a carbon doped $TiO_2$ photocatalyst activating to visible irradiation, where the solid-liquid operation is more effective than solid-solid operation to obtain a carbon doped $TiO_2$.

Pproperties of formaldehyde and CO2 adsorption type matrix using TiO2 photocatalysis (광촉매를 활용한 흡착형 경화체의 포름알데히드 및 CO2 특성)

  • Lee, Won-Gyu;Pyeon, Su-Jeong;Kyoung, In-Soo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.153-154
    • /
    • 2018
  • As the air pollution progresses, the pollution degree of the indoor air quality is increased, and when the pollution degree of the indoor air quality is increased, it causes respiratory diseases and skin diseases. In addition, volatile organic compounds are released from the materials used for architectural interior decoration, and volatile organic compounds are the main cause of polluting indoor air quality. In order to improve indoor air quality, we tried to secure indoor air quality pollution by using photocatalyst which has the function of decomposing harmful substances. photocatalyst is a material that promotes chemical reaction by absorbing light. The photocatalyst used in the experiment was TiO2, In this study, an adsorption type hardener for reducing volatile organic compounds was prepared by photocatalytic reaction. the formaldehyde and CO2 concentrations of the cured products were analyzed according to the TiO2 content.

  • PDF

Characteristic of Degradation of Humic Acid using Jeju Scoria Coated with WO3/TiO2 Photocatalyst (제주 Scoria에 코팅된 WO3/TiO2 광촉매를 이용한 Humic Acid의 광분해 특성)

  • Ryu Seong-Pil;Oh Youn-Keun;Choung Kwang-Ok
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.699-709
    • /
    • 2005
  • This study aimed at improving the $TiO_2$ photocatalytic degradation of HA. In this study, the Degradation of Humic Acid using Jeju Scoria Coated with $WO_3/TiO_2$ in the presence of UV irradiation was investigated as a function of different experimental condition : photocatalyst dosage, $Ca^{2+}\;and\;HCO_{3}_{-}$ addition and pH of the solution. Photodegradation efficiency increased with increasing photocatalyst dosage, the optimum catalyst dosage is 2.5 g/L and Photodegradation efficiency is maximized to $WO_3/TiO_2=3/7$. This indicates that $WO_3$ retains a much higher Lewis surface acidity than $TiO_2,\;and\;WO_3$ has a higher affinity for chemical species having unpaired electrons. The addtion of cation($Ca^{2+}$) in water increased the photodegradaion efficiency. But the addtion of $HCO_{3}^{-}$ ion in water decreased a photodegradation efficiency. Photodegradation efficiency increased with decreasing pH < pzc, the electrostatic repulsion between the HA and the surface of $TiO_2$ decreased.

Photocatalayst and Decomposition Properties of TiO2 and TiO2-CdS Powders Prepared by Supercritical Fluid Method (초임계 유체법으로 제조한 TiO2 및 TiO2-CdS계 광촉매의 분해물성 연구)

  • 전일수;황수현;박상준;길현식;조승범;전명석;임대영
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.481-484
    • /
    • 2004
  • TiO$_2$ and TiO$_2$-CdS powders which were expected to be highly activated photocatalysts were prepared using supercritical fluid method (SCF). The prepared photocatalyst TiO$_2$ powders were crystalline of anatase and ultrafine spherical powders with large specific surface area. When photodecompositoion reaction was done with TiO$_2$ powders prepared by SCF as a photocatalyst in DCA (Dichloroactic Acid) solution, a hazardous organic compound, the photocatlyst, properties of TiO$_2$ powders prepared by SCF were better than that of commercial TiO$_2$ powders.

Photocatalytic Properties of TiO2 According to Manufacturing Method (제조방법에 따른 TiO2의 광촉매 특성 분석)

  • Lee, Hong Joo;Park, Yu Gang;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.156-161
    • /
    • 2018
  • $TiO_2$ photocatalyst powders were prepared by chlorination method and sol-gel method. Specific surface area and crystalline (i.e., anatase and rutile) of the catalyst varied depending on manufacture conditions and method. TTIP-sol photocatalyst had higher methylene blue (MB) decomposition characteristics than photocatalyst from chlorination method and TBOT-sol. MB removal efficiency from aqueous solution with TTIP-sol photocatalyst was over 90%. Experimental results showed that the $TiO_2$ photocatalyst with a single anatase phase and a large specific surface area had high decomposition characteristics of organic materials.

WOx Doped TiO2 Photocatalyst Nano Powder Produced by Sonochemistry Method (초음파 화학 반응을 이용한 WOx 도핑 TiO2 광촉매 나노 분말의 합성)

  • Cho, Sung-Hun;Lee, Soo-Wohn
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2011
  • Nano-technology is a super microscopic technology to deal with structures of 100 nm or smaller. This technology also involves the developing of $TiO_2$ materials or $TiO_2$ devices within that size. The aim of the present paper is to synthesize $WO_x$ doped nano-$TiO_2$ by the Sonochemistry method and to evaluate the effect of different percentages (0.5-5 wt%) of tungsten oxide load on $TiO_2$ in methylene blue (MB) elimination. The samples were characterized using such different techniques as X-ray diffraction (XRD), TEM, SEM, and UV-VIS absorption spectra. The photo-catalytic activity of tungsten oxide doped $TiO_2$ was evaluated through the elimination of methylene blue using UV-irradiation (315-400nm). The best result was found with 5 wt% $WO_x$ doped $TiO_2$. It has been confirmed that $WO_x-TiO_2$ could be excited by visible light (E<3.2 eV) and that the recombination rate of electrons/holes in $WO_x-TiO_2$ declined due to the existence of $WO_x$ doped in $TiO_2$.

Photocatalytic performance of graphene/Ag/TiO2 hybrid nanocomposites

  • Lee, Jong-Ho;Kim, In-Ki;Cho, Donghwan;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Carbon letters
    • /
    • v.16 no.4
    • /
    • pp.247-254
    • /
    • 2015
  • To improve photocatalytic efficiency, graphene/Ag/TiO2 nanotube catalyst was synthesized, and its surface characteristics and photocatalytic activity investigated. For deposition of Ag nanoparticles on the TiO2 nanotubes, a polymer compound containing CH3COOAg/poly(L-lactide) was utilized, and the silver particles were precipitated by reducing the silver ions during the annealing process. Graphene deposition on the Ag/TiO2 nanotubes was achieved using an electrophoretic deposition process. Based on the dye degradation results, it was determined that the photocatalytic efficiency was significantly affected by deposition of silver particles and graphene on the TiO2 catalyst. Highly efficient destruction of the dye was obtained with the new graphene/Ag/TiO2 nanotube photocatalyst. This may be attributed to a synergistic effect of the graphene and Ag nanoparticles on the TiO2 nanotubes.

Synthesis of NiO and TiO2 Combined SiC Matrix Nanocomposite and Its Photocatalytic MB Degradation

  • Zambaga, Otgonbayar;Jun Hyeok, Choi;Jo Eun, Kim;Byung Jin, Park;Won-Chun, Oh
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.458-465
    • /
    • 2022
  • Interest in the use of semiconductor-based photocatalyst materials for the degradation of organic pollutants in a liquid phase has grown, due to their excellent performance and response to the light source. Herein, we fabricated a NiO-SiC-TiO2 ternary structured photocatalyst which had reduced bandgap energy, with strong activation under UV-light irradiation. The synthesized samples were examined using XRD, SEM, EDX, TEM, DRS, EIS techniques and photocurrent measurement. The results confirmed that the two types of metal oxides were well bonded to the SiC fiber surface. The junction of the new photocatalyst exhibited a large number of photoexcited electrons and holes. The holes tended to oxidize the water and form a hydroxyl radical, which promoted the decomposition of methylene blue. The close contact between the 2D SiC fiber and metal oxide semiconductors expanded the scope of absorption wavelength, and enhanced the usability of the ternary photocatalyst for the degradation of methylene blue. Among three synthesized samples, the NiO-SiC-TiO2 showed the best photocatalytic effect, and was considered to have excellent photoelectron transfer due to the synergy effect between the metal oxide and SiC.