• Title/Summary/Keyword: TiNT

Search Result 26, Processing Time 0.029 seconds

Inverse effect of Nickel modification on photoelectrochemical performance of TiNT/Ti photoanode (TiNT/Ti 광아노드의 광전기화학 특성에 미치는 Ni 금속의 영향)

  • Lee, JeongRan;Choi, HaeYoung;Shinde, Pravin S.;Go, GeunHo;Lee, WonJae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.100-100
    • /
    • 2011
  • Nanomaterial architecture with highly ordered, vertically oriented $TiO_2$ nanotube arrays shows a good promise for diverse technological applications. As inspired from the literature reports that Nickel modification can improve the photocatalytic activity of $TiO_2$, it was planned to coat Ni into the $TiO_2$ matrix. In this study, first $TiO_2$ nanotubes(TiNTs) were prepared by anodization (60V,3min) in HF-free aqueous electrolyte on ultrasonically cleaned polished titanium sheet substrates ($1{\times}7cm^2$). The typical thickness of the sintered TiNT ($500^{\circ}C$for10min) was ~1 micronas confirmed from the FESEM study. In the next part, as-anodized and sintered TiNT/Ti photoanodes were used to coat Ni by AC electrodeposition from aqueous 0.1M nickel sulphate solution. During AC electrodeposition, conditions such as 1V DC offset voltage, 9V amplitude (peak-to-peak) and 750 Hz frequency were fixed constant and the deposition time was varied as 0.5 min, 1 min, 2 min and 10 min. The photoelectrochemical performance of pristine and Ni modified TiNT/Ti photoanodes was measured in 1N NaOH electrolyte under 1 SUN illumination in the potential range of -1V and 1.2V versus Ag/AgCl reference electrode. The photocurrent performance of TiNT/Ti photoanode decreased upon Ni modification and the results were confirmed after repeated experiments. This suggests us that Ni modification inhibits the photoelectrochemical performance of $TiO_2$ nanotubes.

  • PDF

Effect of Hydrothermal Reaction Conditions on Piezoelectric Output Performance of One Dimensional BaTiO3 Nanotube Arrays (1차원 BaTiO3 나노튜브 어레이의 압전발전성능에 수열합성 반응조건이 미치는 영향)

  • Lee, Jae Hoon;Hyeon, Dong Yeol;Heo, Dong Hun;Park, Kwi-Il
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.127-133
    • /
    • 2021
  • One-dimensional (1D) piezoelectric nanostructures are attractive candidates for energy generation because of their excellent piezoelectric properties attributed to their high aspect ratios and large surface areas. Vertically grown BaTiO3 nanotube (NT) arrays on conducting substrates are intensively studied because they can be easily synthesized with excellent uniformity and anisotropic orientation. In this study, we demonstrate the synthesis of 1D BaTiO3 NT arrays on a conductive Ti substrate by electrochemical anodization and sequential hydrothermal reactions. Subsequently, we explore the effect of hydrothermal reaction conditions on the piezoelectric energy conversion efficiency of the BaTiO3 NT arrays. Vertically aligned TiO2 NT arrays, which act as the initial template, are converted into BaTiO3 NT arrays using hydrothermal reaction with various concentrations of the Ba source and reaction times. To validate the electrical output performance of the BaTiO3 NT arrays, we measure the electricity generated from each NT array packaged with a conductive metal foil and epoxy under mechanical pushings. The generated output voltage signals from the BaTiO3 NT arrays increase with increasing concentration of the Ba source and reaction time. These results provide a new strategy for fabricating advanced 1D piezoelectric nanostructures by demonstrating the correlation between hydrothermal reaction conditions and piezoelectric output performance.

Quantitative Comparison of the Photocatalytic Efficiency of TiO2 Nanotube Film and TiO2 Powder

  • Jang, Jun-Won;Park, Sung Jik;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.8-14
    • /
    • 2016
  • We compared the plausible reaction mechanism and quantitative efficiency of highly self-organized TiO2 nanotube (ntTiO2) film with TiO2 powder. Film was fabricated by electrochemical potentiostatic anodization of titanium thin film in an ethylene-glycol electrolyte solution containing 0.3 wt% NH4F and 2 vol% deionized water. Nanotubes with a pore size of 80-100 nm were formed by anodization at 60 V for 3 h. Humic acid (HA) was degraded through photocatalytic degradation using the ntTiO2 film. Pseudo first-order rate constants for 0.3 g of ntTiO2, 0.3 g TiO2 powder, and 1 g TiO2 powder were 0.081 min−1, 0.003 min−1, and 0.044 min−1, respectively. HA adsorption on the ntTiO2 film was minimal while adsorption on the TiO2 powder was about 20% based on thermogravimetric analysis. Approximately five-fold more normalized OH radicals were generated by the ntTiO2 film than the TiO2 powder. These quantitative findings explain why ntTiO2 film showed superior photocatalytic performance to TiO2 powder.

CdS-Titania-Nanotube Composite Films for Photocatalytic Hydrogen Production (CdS/Titania-나노튜브 복합 막을 이용한 광촉매적 수소제조)

  • Lee, Hyun-Mi;So, Won-Wook;Baeg, Jin-Ook;Kong, Ki-Jeong;Moon, Sang-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.230-237
    • /
    • 2007
  • Titania nanotube(TiNT) and CdS sol were synthesized by hydrothermal reaction under strongly basic condition and by precipitation reaction of $Cd(N0_3)_2$ and $Na_2S$ aqueous solutions, respectively. After preparing a series of CdS-TiNT composite films on $F:SnO_2$ conducting glass with variation of the mole ratio (r) of TiNT/(CdS+TiNT), their visible light absorption, photocatalytic activities for hydrogen production, and the photocurrent generation were examined. In general, this CdS-TiNT series showed lower photocatalytic activities and photocurrent generation under Xe light irradiation compared to their counterparts, i.e., CdS-$TiO_2$ particulate series. It appeared that TiNTs are not so effective photocatalyic material in spite of their larger specific surface areas compared to $TiO_2$ nanoparticles, because they indicate a poor crystallinity and less intimate interaction or contact with CdS particles owing to the tubular morphology and an easy agglomeration among themselves.

Effect of $Na_2Ti_6O_{13}$ on Microstructure and PTCR Characteristics of $BaTiO_2-(Bi_{0.5}Na_{0.5})TiO_3$ ceramics ($Na_2Ti_6O_{13}$ 첨가에 따른 $BaTiO_2-(Bi_{0.5}Na_{0.5})TiO_3$ 세라믹스의 미세구조 및 PTCR 특성에 미치는 영향)

  • Cha, Yu-Joung;Kim, Chul-Min;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.15-15
    • /
    • 2010
  • $Na_2Ti_6O_{13}$ (NT)가 도핑된 $BaTiO_3-(Bi_{0.5}Na_{0.5})TiO_3$ BBNT) PTCR 세라믹스를 변형된 세라믹공정을 이용하여 제조하였다. 제조된 BBNT 세라믹의 미세구조와 PTCR 특성에 미치는 NT의 효과를 조사하였다. $1300^{\circ}C$에서 합성된 BBNT 세라믹은 NT의 도핑량이 증가함에 따라 비정상적으로 성장된 입자의 수가 증가하였다. 뿐만 아니라, NT의 도핑량 증가는 상온비저항을 약간 증가시켰지만 큐리온도 (Tc) 부근의 최대비저항/최소비저항으로 정의되는 PTC 점프 특성을 크게 향상시켰다. 특히, 0.01mol%의 NT 도핑 시 상온비저항은 $425\;\Omega{\cdot}cm$, PTC 점프는 ($2.02{\times}^10^5$) 저항온도계수는 69.8% 및 Tc는 $155^{\circ}C$의 우수한 결과를 나타내었다.

  • PDF

Photovoltaic Behavior of Dye-sensitized Long TiO2 Nanotube Arrays

  • Kim, Sang-Mo;Kim, Hark-Jin;Kim, Yong-Joo;Lim, Goo-Il;Choi, Young-Sik;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.4035-4040
    • /
    • 2011
  • Long $TiO_2$ nanotube (NT) arrays, prepared by electrochemical anodization of Ti foils, have been utilized as dye-adsorbing electrodes in dye-sensitized solar cells (DSCs). By anodizing for 1-24 hr and subsequent annealing, highly crystallized and tightly-adhered NT arrays were tailored to 11-150 ${\mu}m$ lengths, ~90 nm innerpore diameter and ~30 nm wall thickness. I-V curves revealed that the photovoltaic conversion efficiency (${\eta}$) was proportional to the NT length up to 36 ${\mu}m$. Beyond this length, the ) was proportional to the NT length up to ${\eta}$ was still steadily increased, though at a much lower rate. For example, an ${\eta}$ of 5.05% at 36 ${\mu}m$ was increased to 6.18% at 150 ${\mu}m$. Transient photoelectron spectroscopic analyses indicated that NT array-based DSCs revealed considerably higher electron diffusion coefficient ($D_e$) and life time (${\tau}_e$) than those with $TiO_2$ nanoparticles (NP). Moreover, the electron diffusion lengths ($L_e$) of the photo-injected electrons were considerably larger than the corresponding NT lengths in all the cases, suggesting that electron transport in NT arrays is highly efficient, regardless of tube length.

Analyzing corrosion rates of TiO2 nanotubes/titanium separation passive layer under surface and crystallization changes

  • Torres, I. Zamudio;Dominguez, A. Sosa;Bueno, J.J. Perez;Meas, Y.;Lopez, M.L. Mendoza;Dector, A.
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.211-219
    • /
    • 2021
  • The evaluation of the corrosion resistance of titanium with a TiO2 nanotubes top layer was carried out (TiO2 NT). These nanostructures were evolved into anatase nanoparticles without heat treatment in an aqueous medium, which is a novel phenomenon. This work analyzes the layer between the nanotube bottom and the substrate, which is thin and still susceptible to corrosion. The bottom of TiO2 nanotubes having Fluor resulting from the synthesis process changed between amorphous to crystalline anatase with a crystallite size of about 4 nm, which influenced the corrosion rates. Four kinds of samples were evaluated. A) NT by Ti anodizing; B) NTSB for Ti plates, either modifying its surface or anodizing the modified surface; C) NT-480 for anodized Ti and heat-treated (480℃) for reaching the anatase phase; D) NTSB-480 for Ti plates, first, modifying its surface using sandblast, after that, anodizing the modified surface, and finally, heat-treated to 480℃ to compare with samples having induced crystallization and passivation. Four electrochemical techniques were used to evaluate the corrosion rates. The surfaces having TiO2 nanotubes with a sandblast pre-treatment had the highest resistance to corrosion.

Nanotube-based Dye-sensitized Solar Cells

  • Kim, Jae-Yup;Park, Sun-Ha;Choi, Jung-Woo;Shin, Jun-Young;Sung, Yung-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.71-71
    • /
    • 2011
  • Dye-sensitized solar cells (DSCs) have drawn great academic attention due to their potential as low-cost renewable energy sources. DSCs contain a nanostructured TiO2 photoanode, which is a key-component for high conversion efficiency. Particularly, one-dimensional (1-D) nanostructured photoanodes can enhance the electron transport for the efficient collection to the conducting substrate in competition with the recombination processes. This is because photoelectron colletion is determined by trapping/detrapping events along the site of the electron traps (defects, surface states, grain boundaries, and self-trapping). Therefore, 1-D nanostructured photoanodes are advantageous for the fast electron transport due to their desirable features of greatly reduced intercrystalline contacts with specified directionality. In particular, anodic TiO2 nanotube (NT) electrodes recently have been intensively explored owing to their ideal structure for application in DSCs. Besides the enhanced electron transport properties resulted from the 1-D structure, highly ordered and vertically oriented nanostructure of anodic TiO2 NT can contribute additional merits, such as enhanced electrolyte diffusion, better interfacial contact with viscous electrolytes. First, to confirm the advantages of 1-D nanostructured material for the photoelectron collection, we compared the electron transport and charge recombination characteristics between nanoparticle (NP)- and nanorod (NR)-based photoanodes in DSCs by the stepped light-induced transient measurements of photocurrent and voltage (SLIM-PCV). We confirmed that the electron lifetime of the NR-based photoanode was much longer than that of the NP-based photoanode. In addition, highly ordered and vertically oriented TiO2 NT photoanodes were prepared by electrochemical anodization method. We compared the photovoltaic properties of DSCs utilizing TiO2 NT photoanodes prepared by one-step anodization and two-step anodization. And, to reduce the charge recombination rate, energy barrier layer (ZnO, Al2O3)-coated TiO2 NTs also applied in DSC. Furthermore, we applied the TiO2 NT photoanode in DSCs using a viscous electrolyte, i.e., cobalt bipyridyl redox electrolyte, and confirmed that the pore structure of NT array can enhance the performances of this viscous electrolyte.

  • PDF

Flexible Cu-In-Se Quantum Dot-Sensitized Solar Cells Based on Nanotube Electrodes (나노튜브 전극을 기반으로 한 플렉서블 양자점 감응 태양전지)

  • Kim, Jae-Yup
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.45-48
    • /
    • 2019
  • Quantum dots (QDs) are an attractive material for application in solar energy conversion devices because of their unique properties including facile band-gap tuning, a high-absorption coefficient, low-cost processing, and the potential multiple exciton generation effect. Recently, highly efficient quantum dot-sensitized solar cells (QDSCs) have been developed based on CdSe, PbS, CdS, and Cu-In-Se QDs. However, for the commercialization and wide application of these QDSCs, replacing the conventional rigid glass substrates with flexible substrates is required. Here, we demonstrate flexible CISe QDSCs based on vertically aligned $TiO_2$ nanotube (NT) electrodes. The highly uniform $TiO_2$ NT electrodes are prepared by two-step anodic oxidation. Using these flexible photoanodes and semi-transparent Pt counter electrodes, we fabricate the QDSCs and examine their photovoltaic properties. In particular, photovoltaic performances are optimized by controlling the nanostructure of $TiO_2$ NT electrodes.

Microstructure and Positive Temperature Coefficient of Resistivity Characteristics of Na2Ti6O13-Doped 0.94BaTiO33-0.06(Bi0.5Na0.5)TiO3 Ceramics (Na2Ti6O13를 도핑한 0.94BaTiO3-0.06(Bi0.5Na0.5)TiO3 세라믹스의 미세구조와 Positive Temperature Coefficient of Resistivity 특성)

  • Cha, Yu-Joung;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Wu-Young;Kim, Dae-Joon
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.575-580
    • /
    • 2010
  • The microstructure and positive temperature coefficient of resistivity (PTCR) characteristics of 0.1 mol%$Na_2Ti_6O_{13}$ doped $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$ (BBNT-NT001) ceramics sintered at various temperatures from $1200^{\circ}C$ to $1350^{\circ}C$ were investigated in order to develop eco-friendly PTCR thermistors with a high Curie temperature ($T_C$). Resulting thermistors showed a perovskite structure with a tetragonal symmetry. When sintered at $1200^{\circ}C$, the specimen had a uniform microstructure with small grains. However, abnormally grown grains started to appear at $1250^{\circ}C$ and a homogeneous microstructure with large grains was exhibited when the sintering temperature reached $1325^{\circ}C$. When the temperature exceeded $1325^{\circ}C$, the grain growth was inhibited due to the numerous nucleation sites generated at the extremely high temperature. It is considered that $Na_2Ti_6O_{13}$ is responsible for the grain growth of the $0.94BaTiO_3-0.06(Bi_{0.5}Na_{0.5})TiO_3$) ceramics by forming a liquid phase during the sintering at around $1300^{\circ}C$. The grain growth of the BBNT-NT001 ceramics was significantly correlated with a decrease of resistivity. All the specimens were observed to have PTCR characteristics except for the sample sintered at $1200^{\circ}C$. The BBNT-NT001 ceramics had significantly decreased $\tilde{n}_{rt}$ and increased resistivity jump with increasing sintering temperature at from $1200^{\circ}C$ to $1325^{\circ}C$. Especially, the BBNT-NT001 ceramics sintered at $1325^{\circ}C$ exhibited superior PTCR characteristics of low resistivity at room temperature ($122\;{\Omega}{\cdot}cm$), high resistivity jump ($1.28{\times}10^4$), high resistivity temperature factor (20.4%/$^{\circ}C$), and a high Tc of $157.9^{\circ}C$.