• Title/Summary/Keyword: TiNOx

Search Result 125, Processing Time 0.033 seconds

The Relation Between a Visible-light Photocatalytic Activity of TiO2-xNx and NH3 Amount/the Period of Grinding Time (유성 볼밀을 통해 제조된 TiO2-xNx 광촉매의 가시광 활성도와 NH3양 및 분쇄시간과의 상관 관계)

  • Kang, In-Cheol;Ko, Jun-Bin;Han, Jae-Kil;Kim, Kwang-Hee;Choi, Sung-Chang
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.196-202
    • /
    • 2009
  • A visible-light photoactive $TiO_{2-x}N_x$ photocatalyst was synthesized successfully by means of cogrinding of anatase-$TiO_2(a-TiO_2)$ in $NH_3$ ambient, followed by heat-treatment at $200^{\circ}C$ in air environment. In general, it is well known that the grinding-operation induces phase transformation of a-$TiO_2$ to rutile $TiO_2$. This study investigates the influence of the amount of $NH_3$ gas on the phase transformation rate of a-$TiO_2$ and enhancement of visible-light photocatalytic activity, and also examines the relation between the photocatalytic activity and the period of grinding time. The phase transformation rate of a-$TiO_2$ to rutile is retarded with the amount of NH3 injected. And the visible-light photocatalytic activity of samples, was more closely related to the period of grinding time than $NH_3$ amount injected, which means that the doping amount of nitrogen into $TiO_2$ more effective to mechanical energy than $NH_3$ amount injected. XRD, XPS, FT-IR, UV-vis, Specific surface area (SSA), NOx decomposition techniques are employed to verify above results more clearly.

Characterization of V/TiO2 Catalysts for Selective Reduction (V/TiO2 촉매의 선택적 촉매 환원 반응특성 연구)

  • Lee, Sang-Jin;Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.512-518
    • /
    • 2008
  • The present work studied the selective catalytic reduction (SCR) of NO to $N_2$ by $NH_3$ over $V/TiO_2$ focusing on NOx control for the stationary sources. The SCR process depends mainly on the catalyst performance. The reaction characteristics of SCR with $V/TiO_2$ catalysts were closely examined at low and high temperature. In addition, adsorption and desorption characteristics of the reactants on the catalyst surface were investigated with ammonia. Seven different $TiO_2$ supports containing the same loading of vanadia were packed in a fixed bed reactor respectively. The interaction between $TiO_2$ and vanadia would form various non-stoichiometric vanadium oxides, and showed different reaction activities. There were optimum calcination temperatures for each samples, indicating different reactivity. It was finally found from the $NH_3-TPD$ test that the SCR activity was nothing to do with $NH_3$ adsorption amount.

A Study on Characterization for Low Temperature SCR Reaction by $Mn/TiO_2$ Catalysts with Using a Various Commercial $TiO_2$ Support (다양한 상용 $TiO_2$ 담체를 이용한 $Mn/TiO_2$ 촉매의 저온 SCR 반응 특성 연구)

  • Kwon, Dong Wook;Choi, Hyun Jin;Park, Kwang Hee;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.190-194
    • /
    • 2012
  • 10 wt% Mn supported on various commercial $TiO_2$ catalysts were prepared by wet-impregnation method for the low temperature selective catalytic reduction (SCR) of NO with $NH_3$. A combination of various physico-chemical techniques such as BET, XRD, XPS and TPR were used to characterize these catalysts. MnOx surface densities on MnOx/$TiO_2$ catalyst were related to surface area. As MnOx surface density lowered with high dispersion, the SCR activity for low temperature was increased and the reduction temperature ($MnO_2$ ${\rightarrow}$ $Mn_2O_3$) of surface MnOx was lower. For a high SCR, MnOx could be supported on a high surface area of $TiO_2$ and should be existed a high dispersion of non-crystalline species.

Characteristics of Disc-Type V2O5 Catalyst Impregnated Ceramic Filters for NOx Removal (질소산화물 제거를 위한 디스크형 바나디아 촉매담지 세라믹필터의 특성)

  • 홍민선;문수호;이재춘;이동섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.451-463
    • /
    • 2004
  • The performance of disk-type catalytic filters impregnated by TiO$_2$ or TiO$_2$-3Al$_2$O$_3$ㆍ 2SiO$_2$ supports and V$_2$O$_{5}$ catalyst was evaluated for selective catalytic reduction (SCR) of NO with ammonia as a reductant. XRD, FT -IR, BET and SEM were used to characterize the catalytic filters prepared in this work. Optimal V$_2$O$_{5}$ loading and reaction temperature for V$_2$O$_{5}$/TiO$_2$ catalytic filters were 3-6 wt.% and 350-40$0^{\circ}C$ at GHSV 14,300 $hr^{-1}$ in the presence of oxygen, respectively. With increasing the V$_2$O$_{5}$ loading from 0.5 to 6 wt%, NO conversion increased from 24 to 96% at 40$0^{\circ}C$ and 14.300$hr^{-1}$, and maintained at 80% over in the V$_2$O$_{5}$ loading range of 3-6 wt.% and then dropped at V$_2$O$_{5}$ loading of 7wt.% over. In comparing V$_2$O$_{5}$/ TiO$_2$ and V$_2$O$_{5}$/ TiO$_2$-3Al$_2$O$_3$ㆍ2SiO$_2$ catalytic fillers, which have same 3wt.% V$_2$O$_{5}$ loading, the V$_2$O$_{5}$/ TiO$_2$-3A1$_2$O$_3$ㆍ2SiO$_2$ catalytic filter showed higher activity than V$_2$O$_{5}$/ TiO$_2$ catalytic filter, but higher differential pressure drops owing to its low air permeability. low air permeability.

Characterization of Low Temperature Selective Catalytic Reduction over Ti Added Mn-Cu Metal Oxides (Ti가 첨가된 Mn-Cu 혼합산화물을 이용한 저온 SCR 반응 특성)

  • Lee, Hyun Hee;Park, Kwang Hee;Cha, Wang Seog
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.599-604
    • /
    • 2013
  • In this study, Ti added Mn-Cu mixed oxide catalysts were prepared by a co-precipitation method and used for the low temperature (< $200^{\circ}C$) selective catalytic reduction (SCR) of NOx with $NH_3$. Physicochemical properties of these catalysts were characterized by BET, XRD, XPS, and TPD. Mn-Cu mixed oxide catalysts were found to be amorphous with a large surface and they showed high SCR activity. Experimental results showed that the addition of $TiO_2$ to Mn-Cu oxide enhanced the SCR activity and $N_2$ selectivity. Ti addition led to the chemically adsorbed oxygen species that promoted the oxidation of NO to $NO_2$ and increased the number of $NH_3$ adsorbed-sites such as $Mn^{3+}$.

Correlation between Physicochemical Properties of Various Commercial TiO2 Supports and NH3-SCR Activities of Ce/Ti Catalysts (다양한 상용 TiO2 담체의 물리화학적 특성과 Ce/Ti 촉매의 SCR 반응활성과의 상관성 연구)

  • Kwon, Dong Wook;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.193-198
    • /
    • 2015
  • Ceria supported on various commercial $TiO_2$ catalysts were prepared by wet-impregnation method. We confirmed that the correlation between physicochemical properties of $TiO_2$ supports and SCR activities. Physicochemical properties of the various $TiO_2$ were evaluated using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, X-ray photoelectron spectroscopy (XPS), and pH analysis. Ce/Ti catalyst exhibited different SCR activities with respect to physicochemical properties of $TiO_2$. An excellent activity was obtained as the surface area of $TiO_2$ increased. In the case of CeOx surface density, the excellent activity in a range of $2.5{\sim}14.5CeOx/nm^2$ was achieved and the activity tended to decrease above $14.5CeOx/nm^2$. The O/Ti mole ratio of $TiO_2$ in the range of 1.32 to 1.79 showed an excellent SCR activity. It was also confirmed that the pH of the $TiO_2$ has no effects on the SCR activity. In order to achieve excellent SCR activities, ceria oxide should be supported on $TiO_2$ possessing a high specific surface area and certain O/Ti mole ratio. In addition, the catalyst with the low CeOx surface density resulted from the high dispersed ceria oxide should be prepared.

Investigation on the Preparation Method of TiO2-mayenite for NOx Removal (질소산화물 제거를 위한 TiO2-mayenite 제조 방법에 관한 연구)

  • Park, Ji Hye;Park, Jung Jun;Park, Hee Ju;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.304-310
    • /
    • 2020
  • In order to apply a photocatalyst (TiO2) to various building materials, TiO2-mayenite was prepared in this study. The TiO2 was synthesized using the sol-gel method by fixing titanium isopropoxide (TTIP) and urea at a ratio of 1 : 1. Later, they were calcined in a temperature range of 400-700 ℃ to analyze the properties according to temperature. BET, TGA, and XRD were used to analyze the physical and chemical properties of TiO2. The nitrogen oxide removal test was confirmed by measuring the change in the concentration of NO for 1 h according to KS L ISO 22197-1. The prepared TiO2 samples exhibited an anatase crystal structure below 600 ℃, and TiO2 (urea)-400 showed the highest nitrogen oxide removal rate at 2.35 µmol h-1. TiO2-mayenite was prepared using two methods: spraying TiO2 dispersion solution (s/s) and sol-gel solution (g/s). Through BET and XRD analysis, it was found that 5-TiO2 (g/s) prepared by spraying a sol-gel solution has maintained its crystallinity even after heat treatment. Also, 5-TiO2 (g/s)-500 showed the highest removal rate of 0.55 µmol h-1 in the nitrogen oxide removal test. To prepare TiO2-mayenite, it was confirmed that mayenite should be blended with TiO2 in a sol-gel state to maintain the crystal structure and exhibit a high nitrogen oxide removal rate.

A Study on degradation of gas-phase TCE using TiO$_2$ photocatalyst (TiO$_2$ 광촉매를 이용한 기상 TCE의 분해에 관한 연구)

  • 김상범;박태성;조영민;홍성창
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.307-308
    • /
    • 2002
  • 최근 들어 지구환경의 보전 필요성이 그 어느 때보다도 강하게 제기되면서 대류권 내에서 진행되는 광화학적 대기오염 현상과 그에 따른 오존농도의 증가에 대해 많은 관심이 집중되고 있다 광화학적 대기오염현상이란 대기중의 휘발성 유기화합물(Volatile Organic Compounds VOCs)과 질소산화물(NOx)이 햇빛 내의 자외선에 의해 반응하면 오존, 알데히드, peroxyacetyl nitrate 등과 같은 2차 오염물질인 광화학 산화물을 생성하는 것을 의미하는데 이 광화학 산화물은 생물체에 악영향을 주고 아울러 성층권의 오존층을 파괴하여 궁극적으로는 지구 온난화 현상의 원인이 되고 있다. (중략)

  • PDF

Effects of Different Precursors on the Surface Mn Species Over $MnO_x/TiO_2$ for Low-temperature SCR of NOx with $NH_3$

  • Kim, Jang-Hoon;Yoon, Sang-Hyun;Lee, Hee-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.29.1-29.1
    • /
    • 2011
  • The selective catalytic reduction (SCR) of $MnO_x$ with $NH_3$ is an effective method for the removal of $MnO_x$ from stationary system. The typical catalyst for this method is $V_2O_5-WO_3(MoO_3)/TiO_2$, caused by the high activity and stability. However, This catalyst is active within $300{\sim}400^{\circ}C$ and occurs the pore plugging from the deposition of ammonium sulfate salts on the catalysts surface. It needs to locate the SCR unit after the desulfurizer and electrostatic precipitator without reheating of the flue gas as well as deposition of dust on the catalyst. The manganese oxides supported on titania catalysts have attracted interest because of its high SCR activity at low temperature. The catalytic activity of $MnO_x/TiO_2$ SCR catalyst with different manganese precursors have investigated for low-temperature SCR in terms of structural, morphological, and physico-chemical analyses. The $MnO_x/TiO_2$ were prepared from three different precursors such as manganese nitrate, manganese acetate (II), and manganese acetate (III) by the sol-gel method and then it calcinated at $500^{\circ}C$ for 2 hr. The structural analysis was carried out to identify the phase transition and the change intensity of catalytic activity by various manganese precursors was analyzed by FT-IR and Raman spectroscopy. These different precursors also led to various surface Mn concentrations indicated by SEM. The Mn acetate (III) tends to be more suppressive the crystalline phase (rutile), and it has not only smaller particle size, but also better distributed than the others. It was confirmed that the catalytic activity of MA (III)-$MnO_x/TiO_2$ was the highest among them.

  • PDF

Effects of Manganese Precursors on MnOx/TiO2 for Low-Temperature SCR of NOx (NOx제거용 MnOx-TiO2 계 저온형SCR 촉매의 Mn전구체에 따른 영향)

  • Kim, Janghoon;Shin, Byeong kil;Yoon, Sang hyeon;Lee, Hee soo;Lim, Hyung mi;Jeong, Yongkeun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.201-205
    • /
    • 2012
  • The effects of various manganese precursors for the low-temperature selective catalytic reduction (SCR) of $NO_x$ were investigated in terms of structural, morphological, and physico-chemical analyses. $MnO_x/TiO_2$ catalysts were prepared from three different precursors, manganese nitrate, manganese acetate(II), and manganese acetate(III), by the sol-gel method. The manganese acetate(III)-$MnO_x/TiO_2$ catalyst tended to suppress the phase transition from the anatase structure to the rutile or the brookite after calcination at $500^{\circ}C$ for 2 h. It also had a high specific surface area, which was caused by a smaller particle size and more uniform distribution than the others. The change of catalytic acid sites was confirmed by Raman and FT-IR spectroscopy and the manganese acetate(III)-$MnO_x/TiO_2$ had the strongest Lewis acid sites among them. The highest de-NOx efficiency and structural stability were achieved by using the manganese cetate(III) as a precursor, because of its high specific surface area, a large amount of anatase $TiO_2$, and the strong catalytic acidity.