• Title/Summary/Keyword: TiN films

Search Result 641, Processing Time 0.038 seconds

The Characteristic and Formation of Ti(B,N) Films on Steel by EA Hot Filament CVD (EA hot filament CVD system을 이용하여 금형공구강에 증착한 Ti(B,N)박막의 합성과 특성에 관하여)

  • Yoon, Jung-H.;Choi, Yong;Choe, Jean-I.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.585-589
    • /
    • 2012
  • The characteristics of interface layer and the effect of mole fraction of inlet gas mixture($B_2H_6/H_2/N_2/TiCl_4$) on the microstructure of Ti(B,N) films were studied by microwave plasma hot filament CVD process. Ti(B,N) films were deposited on a substrate(STD-61) to develop a high performance of resistance wear coating tool. Ti(B,N) films were obtained at a gas pressure of 1 torr, bias voltage of 300 V and substrate temperature of $480^{\circ}C$ in $B_2H_6/H_2/N_2/TiCl_4$gas system. It was found that TiN, $TiB_2$, TiB and hexagonal boron nitride(h-BN) phases exist in thin layer on the STD-61.

Microstructural and Mechanical Characterization of Nanocomposite Ti-Al-Si-N Films Prepared by a Hybrid Deposition System (하이브리드 증착 시스템에 의해 합성된 나노복합체 Ti-Al-Si-N 박막의 미세구조와 기계적 특성)

  • 박인욱;최성룡;김광호
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • Quaternary Ti-Al-Si-N films were deposited on WC-Co substrates by a hybrid deposition system of arc ion plating (AIP) method for Ti-Al source and DC magnetron sputtering technique for Si incorporation. The synthesized Ti-Al-Si-N films were revealed to be composites of solid-solution (Ti, Al, Si)N crystallites and amorphous Si3N4 by instrumental analyses. The Si addition in Ti-Al-N films affected the refinement and uniform distribution of crystallites by percolation phenomenon of amorphous silicon nitride, similarly to Si effect in TiN film. As the Si content increased up to about 9 at.%, the hardness of Ti-Al-N film steeply increased from 30 GPa to about 50 GPa. The highest microhardness value (~50 GPa) was obtained from the Ti-Al-Si-N film haying the Si content of 9 at.%, the microstructure of which was characterized by a nanocomposite of nc-(Ti,Al,Si) N/a$-Si_3$$N_4$.

Study on the Frictional Behavior, Wear and Corrosion Resistance of Textured TiN Coated Layers (집합조직이 존재하는 TiN 코팅 층의 마찰, 마멸, 내부식 특성에 관한 연구)

  • 김희동;김인수;성동영;이민구
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.394-400
    • /
    • 2003
  • TiN coated films exhibit excellent mechanical properties such as high wear, erosion and corrosion resistances and a high thermal stability. Therefore, they are widely applied to a coating material in tools, ornaments, parts and semiconductors. However, the fracture of TiN coated films frequently occurs. The distribution of preferred orientations, i.e., texture, of TiN coated films strongly influences the fracture behavior of these films. In the present study. various TiN coating layers having different textures were prepared by the reactive ion physical vapor deposition and the texture dependence of friction coefficient, erosion and corrosion in these coating layers was investigated. The sample depicting the (115) texture parallel to the coating layer normal displayed a flatter surface than that observed from the sample having the (111) texture. The friction coefficient of TiN thin films was hardly dependent on the texture of coated samples. The samples having (115) texture displayed higher wear, erosion and corrosion resistances than the samples having (111) texture.

Growing Behavior of Nanocrystalline TiN Films by Asymmetric Pulsed DC Reactive Magnetron Sputtering (비대칭 펄스 DC 반응성 마그네트론 스퍼터링으로 증착된 나노결정질 TiN 박막의 성장거동)

  • Han, Man-Geun;Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.342-347
    • /
    • 2011
  • Nanocrystalline TiN films were deposited on Si(100) substrate using asymmetric pulsed DC reactive magnetron sputtering. We investigated the growing behavior and the structural properties of TiN films with change of duty cycle and pulsed frequency. Grain size of TiN films were decreased from 87.2 nm to 9.8 nm with decrease of duty cycle. The $2{\theta}$ values for (111) and (200) crystallographic planes of the TiN films were also decreased with decrease of duty cycle. This shift in $2{\theta}$ could be attributed to compressive stress in the TiN coatings. Thus, the change of plasma parameter has a strong influence not only on the microstructure but also on the residual stresses of TiN films.

Characterizations of Ti-Al-V-N Films Deposited by DC and RF Reactive Magnetron Sputtering (직류 및 고주파 마그네트론 스퍼터링법으로 증착한 Ti-Al-V-N 박막의 특성)

  • Sohn, Yong-Un;Chung, In-Wha;Lee, Young-Ki
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.6
    • /
    • pp.398-404
    • /
    • 2000
  • The Ti-Al-V-N films have been deposited on various substrates by d.c and r.f reactive magnetron sputtering from a Ti-6Al-4V alloy target in mixed $Ar-N_2$ discharges. The films were investigated by means of XRD, AES, SEM/EDX, microhardness, TG and scratch test. The XRD and SEM results indicated that the films were of single B1 NaCl phase having dense columnar structure with the (111) preferred orientation. The composition of Ti-Al-V-N film was the Ti-7.1Al-4.3V-N(wt%) films. Adhesion and microhardness of Ti-Al-V-N films deposited by r.f magnetron sputtering method were better than those deposited by d.c magnetron sputtering method. The anti-oxidation properties of Ti-Al-V-N films were also superior to that of Ti-N film deposited by the same deposition conditions.

  • PDF

Evaluation for Thin Films Characteristics of Nitride Titanium-Chromium using Arc Ion Plating (아크이온플레이팅에 의한 질화 티탄-크롬의 박막특성 평가)

  • Fujita, Kazuhisa;Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.96-101
    • /
    • 2011
  • The thin films of TiN have been used extensively as wear-resistant materials, for instance, such as tools of high-speed cutting, metal mold forming etc. In these days, because the thin films capable of being used more severe conditions are needed, the technologies of arc ion plating are tried to improve its characteristics. The purpose of this study is to investigate the characteristics of thin films of (Ti,Cr)N compared with those of TiN. The method of arc ion plating, which is known as showing good tight-adherence and productivity, was used. After manufacturing thin films of ($Ti_{1-x}Cr_{x}$)N (x=0~1) with change of Cr in (Ti,Cr) target, atomic concentration, structure, size of crystallite, residual stress and surface roughness of thin films on substrate were investigated. As the results, it was confirmed that Cr atomic concentrations of thin films were proportionally changed with Cr atomic concentrations of target, and thin films of ($Ti_{1-x}Cr_{x}$)N (x=0~1) showed NaCl type and CrN existed as solid solution to TiN.

A study on the effect of process parameters on the corrosion resistance of ion plated Tin films with Ti and Ni interlayers. (이온플레팅시 공정조건이 Ti 및 Ni 중간층을 갖는층을 갖는 TiN 박막의 내식성에 미치는 영향에 관한 연구)

  • 하희성;이종민;이인행;이정중
    • Journal of Surface Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.33-43
    • /
    • 1997
  • The effects of process parameters substrate such as substrate current and substrate temperature on the corrosion resistance of ion plated TiN film were investigated. TiN fims were deposited on speed steel on which Ti or Ni hed been previously evaporated. Dense TiN films could be obtained under higher substrate current(1A) and substrate temperature($500^{\circ}C$), whereas TiN films deposited with lower substances current(0.5A) and substrate temperature($300^{\circ}C$) showed porous structure. The corrosion resistances of high speed steel was considerably increased when dense TiN films had been formed on it. The effect of Ti and Ni interlayer on the increase of the corrosion resistance was also significant with dense TiN films, while there was little effect of interlayer on the corrosion resistance when TiN films were porous. the effect of interlayer on the corrosion resistance was more outstanding with Ti then with Ni, because Ti reacts more easily with oxygen to form an oxide layer, and it also shows higher resistance against chlorine containing corrosion media.

  • PDF

Effects of metal dopant content on mechanical properties of Ti-Cu-N films

  • Hyun S. Myung;Lee, Hyuk M.;Kim, Sang S.;Jeon G. Han
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.37-37
    • /
    • 2001
  • TiN coatings were applied for VarIOUS application fields, because of a good wear-resistance and a high hardness. Typically, TiN thin films show the hardness of 25GPa and friction coefficient of 0.6. However, in many field, one is looking for a more improved tool which has low friction coefficient and high wear resistance. The main motivation of this study is to characterize the influence of copper dopant content on TiN thin films. Ti-Cu-N thin films were deposited onto D2 steel substrates by PVD processing with various magnetron current densities (Cu contents). In this work, we synthesized titanium nitride films similar with reported typical titanium nitride films and synthesized Ti-Cu-N thin films with the addition of elemental copper which is measured improved hardness more than pure TiN films with copper content variables. This films has preferred oriented films of (111) direction. In addition, It was found that there is a strong correlation between content of various metal and film characteristics such as preferred orientation, grain size, hardness and friction coefficient and so, in future study, improved mechanical properties of TiN films can be controlled by change in target current density. The Ti-Cu-N film will show apparent hardness improvement and mechanical properties enhancement, when doping element is added onto TiN thin films. Film structure, chemical composition, mechanical properties were investigated by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy(EDS), wear resistance tester and nanohardness tester.

  • PDF

Structural Analyses and Properties of $Ti_{1-x}Al_xN$ Films Deposited by PACVD Using a $TiCl_4/AlCl_3/N_2/Ar/H_2$ Gas Mixture ($TiCl_4/AlCl_3/N_2/Ar/H_2$ 반응계를 사용하는 플라즈마화학증착법에 의한 $Ti_{1-x}Al_xN$ 박막의 구조분석 및 물성)

  • 김광호;이성호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.809-816
    • /
    • 1995
  • Ti1-xAlxN films were successfully deposited on high speed steel and silicon wafer by plasma-assisted chemical vapor deposition using a TiCl4/AlCl3/N2/Ar/H2 gas mixture. Plasma process enabled N2 gas to nitride AlCl3, which is not possible in sense of thermodynamics. XPS analyses revealed that the deposited layer contained Al-N bond as well as Ti-N bond. Ti1-xAlxN films were polycrystalline and had single phase, B1-NaCl structure of TiN. Interplanar distance, d200, of (200) crystal plane of Ti1-xAlxN was, however, decreased with Al content, x. Al incorporation into TiN caused the grain size to be finer and changed strong (200) preferred orientation of TiN to random oriented microstructure. Those microstructural changes with Al addition resulted in the increase of micro-hardness of Ti1-xAlxN film up to 2800Kg/$\textrm{mm}^2$ compared with 1400Kg/$\textrm{mm}^2$ of TiN.

  • PDF

Properties of TiN Films Fabricated by Oblique Angle Deposition (빗각 증착으로 제조된 TiN 박막의 특성)

  • Jung, Jae-Hun;Yang, Ji-Hoon;Park, Hye-Sun;Song, Min-A;Jeong, Jae-In
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.3
    • /
    • pp.106-110
    • /
    • 2012
  • Oblique angle deposition (OAD) is a physical vapor deposition where incident vapor flux arrives at non-normal angles. It has been known that tilting the substrate changes the properties of the film, which is thought to be a result of morphological change of the film. In this study, OAD has been applied to prepare single and multilayer TiN films by cathodic arc deposition. TiN films have been deposited on cold-rolled steel sheets and stainless steel sheet. The deposition angle as well as substrate temperature and substrate bias was changed to investigate their effects on the properties of TiN films. TiN films were analyzed by color difference meter, scanning electron microscopy, nanoindenter and x-ray diffraction. The color of TiN films was not much changed according to the deposition conditions. The slanted and zigzag structures were observed from the single and multilayer films. The relation between substrate tilting angle (${\alpha}$) and the growth column angle (${\beta}$) followed the equation of $tan{\alpha}=2tan{\beta}$. The indentation hardness of TiN films deposited by OAD was low compared with the ones prepared at normal angle. However, it has been found that $H^3/E^2$ ratio of 3-layer TiN films prepared at OAD condition was a little higher than the ones prepared at normal angle, which can confirm the robustness of prepared films.