• Title/Summary/Keyword: TiN coated tool

Search Result 88, Processing Time 0.023 seconds

A Study on Microstructure, Mechanical Properties, Friction and Adhesion of TiN Thin Films Coated on SKD61 and Radical Nitrided SKD61 Substrates by Arc Ion Plating (SKD61과 Radical Nitriding 처리된 SKD61 기판상에 Arc Ion Plating으로 증착된 TiN 박막의 미세구조 및 기계적 특성, 마찰 및 접착력에 관한 연구)

  • Joo, Yun-Kon;Yoon, Jae-Hong;Fang, Wei;Zhang, Shi-Hong;Cho, Tong-Yul;Ha, Sung-Sik
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.6
    • /
    • pp.254-257
    • /
    • 2007
  • TiN coating on tool steel has been widely used for the improvement of durability of tools. In this work, radical nitriding(RN) is carried out on SKD61 at $450^{\circ}C$ for 5 hours in the ammonia gas pressure $2.7{\times}10^3\;Pa$. The TiN coating is carried out by arc ion plating(AIP) with the process parameters: arc power 150 A, bias voltage -50V, coating time 40 minutes and nitrogen gas pressure $4{\times}10^3\;Pa$. Hardness, elastic modulus, friction coefficient and adhesion of TiN coating on substrates of both TiN/SKD61 and TiN/RN SKD61 coatings are investigated comparatively. The primary crystalline faces of TiN surface are(200) and(111) for TiN/SKD61 and TiN/RN SKD61 respectively. In addition to the primary phase, Fe phase exists in TiN/SKD61 coating, but not in TIN/RN SKD61. The hardness of TiN/RN SKD61 is about 700 Hv, 250 Hv(56%) higher than that of TiN/SKD61 at the near interface of TiN and substrates. At the TiN surface, hardness of TiN/RN SKD61 is 2,149 Hv, 71 Hv(3%) higher than that of TiN/SKD61. The elastic modulus of TiN coating is improved to 26.7 GPa(6%) by radical nitriding. The adhesion is improved by the RN coating showing no spalling. buckling and chipping on the scratch test track which are shown on the non-RN TiN/SKD61.

RSM-based MOALO optimization and cutting inserts evaluation in dry turning of AISI 4140 steel

  • Hamadi, Billel;Yallese, Mohamed Athmane;Boulanouar, Lakhdar;Nouioua, Mourad;Hammoudi, Abderazek
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • An experimental study is carried out to investigate the performance of the cutting tool regarding the insert wear, surface roughness, cutting forces, cutting power and material removal rate of three coated carbides GC2015 (TiCN-Al2O3-TiN), GC4215 (Al2O3-Ti(C,N)) and GC1015 (TiN) during the dry turning of AISI4140 steel. For this purpose, a Taguchi design (L9) was adopted for the planning of the experiments, the effects of cutting parameters on the surface roughness (Ra), tangential cutting force (Fz), the cutting power (Pc) and the material removal rate (MRR) were studied using analysis of variance (ANOVA), the response surface methodology (RSM) was used for mathematical modeling, with which linear mathematical models were developed for forecasting of Ra, Fz, Pc and MRR as a function of cutting parameters (Vc, f, and ap). Then, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented for multi-objective optimization which allows manufacturers to enhance the production performances of the machined parts. Furthermore, in order to characterize and quantify the flank wear of the tested tools, some machining experiments were performed for 5 minutes of turning under a depth of 0.5 mm, a feed rate of 0.08 mm/rev, and a cutting speed of 350 m/min. The wear results led to a ratio (VB-GC4215/VB-GC2015) of 2.03 and (VB-GC1015/VB-GC2015) of 4.43, thus demonstrating the efficiency of the cutting insert GC2015. Moreover, SEM analysis shows the main wear mechanisms represented by abrasion, adhesion and chipping.

A Study on Characteristics of Surface Roughness by Cutting Condition Variation in Face Milling (정면밀링가공시 절삭조건 변화에 표면거칠기 특성에 관한 연구)

  • 김성일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.248-253
    • /
    • 1997
  • The ideal surface roughness is obtained by tool geometry and feed rate in face milling. however actual surface roughness is affected by various factors such as cutting conditions. vibration and used tool. To improve the quality and productivity of the machining parts, lots of research on the evaluation of tool life and control of surface roughness has been required. Therefore, the width of flank wear, cutting force, and surface roughness are monitored to analyse the characteristics of surface roughness. This experimental investigation is mainly focused on the characteristics of surface roughness in multi-insert milling using TiN coated tool.

  • PDF

Evaluation of vibration property and machinability of spindle system in high speed machining center (고속 머시닝센터의 주축계 진동특성과 가공성 평가)

  • 김전하;강명창;김정석;김기태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.16-21
    • /
    • 2002
  • The high speed machining center(HMC) has been widely applied to manufacture a die and trial product in many machine industry. Because the evaluation fer the HMC is not sufficiently performed and the efficient cutting conditions aren't selected, a great loss has been caused in the cost aspect. In this study, the need of preliminary running time and unstable spindle speed is presented from the analysis of acceleration in idling. The Machinability fur the TiAlN coated flat end mill and STD11( $H_{R}$C60) is evaluated from the trends of tool wear and cutting force according to cutting conditions and slenderness ratio and a low response of tool dynamometer in high speed is proved. The resonance spindle speed is identified through the tool wear and natural frequency test.t.

  • PDF

Evaluation of Vibration Characteristics and Machinability of High Speed Machining Center (고속 머시닝센터의 진동특성 및 가공성 평가)

  • 강익수;강명창;김정석;김기태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.424-429
    • /
    • 2004
  • The high speed machining center(HMC) has been widely applied to manufacture a die and trial product in many machine industry. Because the evaluation for HMC is not sufficiently performed and the efficient cutting conditions can't be selected, a peat loss has been caused in the cost aspect. In this study, the need of preliminary running time and unstable spindle speed is presented by the analysis of acceleration in idling. The Machinability for the TiA1N coated flat end mill and STD11 (H$\sub$R/C60) is evaluated from the trends of tool wear and cutting force according to cutting conditions . The resonance spindle speed is identified through the tool wear and natural frequency test.

  • PDF

Experimental and numerical research on ballistic performance of carbon steels and cold worked tool steels with and without Titanium Nitride (TiN) coating

  • Ergul, Erdi;Doruk, Emre;Pakdil, Murat
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2017
  • It is extremely important to be aware of the ballistic performances of engineering materials in order to be able to choose the lightest armor providing full ballistic protection in civil and military applications. Therefore, ballistic tests are an important part of armor design process. In this study, ballistic performance of plates made of carbon steel and cold worked tool steel against 7.62 mm AP (armor-piercing) bullets was examined experimentally and numerically in accordance with NIJ standards. Samples in different sizes were prepared to demonstrate the effect of target thickness on ballistic performance. Some of these samples were coated with titanium nitride using physical vapor deposition (PVD) method. After examining all successful and unsuccessful samples at macro and micro levels, factors affecting ballistic performance were determined. Explicit non-linear analyses were made using Ls-Dyna software in order to confirm physical ballistic test results. It was observed that the ballistic features of steel plates used in simulations comply with actual physical test results.

Effect of Ball End Mill Cutting Environments on Machinability of Hardened Tool Steel (볼 엔드밀 가공환경 조건이 고경도 강재의 절삭 특성에 미치는 영향)

  • 이영주;원시태
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2004
  • This research conducted milling tests to study effects of cutting environment conditions of ball end mills on the characteristics of hard milling process. KP4 steels and STD11 heat treated steels were used as the workpiece and WC-Co ball end mill tools with TiAlN coated were utilized in the cutting tests. Dry cutting without coolant and semi-dry cutting using botanical oil coolant were conducted and MQL(Minimum Quantity Lubricant) device was used to spray coolant. Cutting forces, tool wear and surface roughness were measured in the cutting tests. Results showed that dry cutting of KP4 and hardened STD11 specimens produced better surface quality and wear performance than MQL spray cutting did.

High Speed Machining of Difficult-to-cut Material using Ball Endmill (볼 엔드밀을 이용한 난삭재의 고속가공 특성)

  • 손창수;강명창;이득우;김종관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.139-142
    • /
    • 1995
  • Inconel 718 is one of the most difficut workpiece for machining, So it is necessary to evaluate the machining characteristics of Inconel 718 In this study, High speed machining of this material was carried out with Tin coated WC ball endmill and TiN coated HSS ball endmill. The cutting force and shape of machined surface and cip type were investigated according to variation of cutting speed,feed rate and depth of cut

  • PDF

The Analysis of Machining Characteristics of SKD11 by Orthogonal Cutting Experiments (SKD11의 2차원 절삭실험을 통한 절삭 특성 해석)

  • 김남규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.365-370
    • /
    • 1999
  • SKD11 is one of the most difficult workpiece for machining, so it is necessary to evaluate the machining characteristics of SKD11. The workpiece was made to be the pipe form and heat-treated to HRC45. In this paper, the orthogonal cutting experiment of this material was carried out with TiAlN coated WC cutting tool of 4 kinds of rake angle. After cutting experiment, cutting characteristics of SKD11 were investigated according to variation of cutting speed, feedrate and rake angle.

  • PDF

A Study on the characteristics of the High Speed Machining for several Tool Materials change of Ellipse Mirror Machining to be used in Millimeter Wave Interferometer System (밀리미터파 간섭계용 타원 반사경의 공구 변화에 따른 고속절삭 특성 연구)

  • Lee, Sang-Yong;Kim, Geon-Hee;Kim, Hyo-Sik;Yang, Soon-Cheol;Hong, Chang-Deoc;Cho, Byung-Moo;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.22-27
    • /
    • 2007
  • This study aims to find the optimal cutting conditions, when ellipse mirrors consisted Aluminum alloy were made it the Millimeter-Wave Interferometer System mirror with several tools on the High-Speed Machine. Machining technique for precision machining characteristics of ellipse mirrors consisted Al6061 matter by Ball endmill is reported in this paper., Results of machining on the High-Speed Machine(using NCD(Natural Crystalline diamond), WC and coated TiAlN ${\phi}6mm$ ball endmill tool) had measurement of surface roughness and form accuracy with cutting conditions(the Feed rate, the Depth of cut and the Cutting speed). the Millimeter-Wave Interferometer System ellipse mirror had been machined foundational precision machining characteristics of aluminum.

  • PDF