• Title/Summary/Keyword: TiN coated tool

Search Result 88, Processing Time 0.022 seconds

A Study on the Friction and Wear Characteristics of TiC, TiN and Ti(CN) with PECVD Process (PECVD 공정에 의한 TiC, TiN 및 Ti(CN)의 마찰 마모 특성 연구)

  • Rhee Bong Goo;Jeon Ghan Yeol;Kim Jung Ki;Kim Dong Hyun;Oh Seong Mo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-7
    • /
    • 2005
  • In order to determine the wear Properties of PECVD ceramic coatings, wear process was evaluated using the coated pin of Falex Tribosystem. Coating materials deposited wear the TiC, TiN and Ti(CN). An experimental process was established to determine the tribological characteristics of friction and wear behavior under the variation of applied load, temperature and sliding distance by the Falex test machine. The experimental results indicate that TiN coating compared with TiC coating on e materials have e excellent friction and wear characteristics. However TiC coating compared i친 TiN coatings have a low friction coefficient with steel and good thermal stability, and Ti(CN) has the excellent anti-wear properly as well as the superiority of extreme pressure property. Compound coating compared wi simple coatings show improved tribological characteristics.

Wear of Partially Coated Tool in Interrupted Cutting (부분 피복된 HSS 공구의 단속절삭시의 마멸)

  • 김동욱;조용주;지용권;류병진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.67-72
    • /
    • 1994
  • Tool test was conducted to investigate the were process of only flank face TiN coated HSS tool in interrupted cutting for variuos cutting speeds and feed rates. Flank wear was caused by microchipping at the cutting edge. At high cutting speed, the which was formed as a result of diffusion and abrasion lowered cutting edge and influenced flank were. Flank wear due to chipping was little influenced by cutting speed.

  • PDF

Structure & Fatigue Behavior of TiCN and TiN/TiCN Thin Films (TiCN 및 TiN/TiCN 박막의 구조와 피로거동)

  • Baeg, C.H.;Hong, J.W.;Wey, M.Y.;Kang, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.324-329
    • /
    • 2000
  • Microstructure, mechanical and fatigue behaviors of TiCN and TiN/TiCN thin films, deposited on quenched and tempered STD61 tool steel, were investigated by using XRD, XPS, hardness, adhesion and fatigue tests. The TiCN thin film is grown along the (100), (111) orientation, whereas the TiN/TiCN thin film is grown along the (111) orientation. The preferred orientation of TiN/TiCN thin film strongly depends on the TiN buffer layer whose orientation is (111), as is well-known. The TiN/TiCN thin film showed the higher adhesion compared with TiCN single layer because the TiN buffer layer, having good toughness, reduces the effects of the lower hardness of substrate. In the high cycle tension-tension fatigue test, the fatigue life of the TiCN and the TiN/TiCN coated steel increased approximately two to four times and five to nine times respectively compared with uncoated specimens. The TiN buffer layer in multilayer thin films plays an important role in reducing residual stress and fatigue crack initiation, and then in restraining the fatigue propagation.

  • PDF

Characterization of TiN Layered Substrate using Leaky Rayleigh Surface Wave (누설 레일리 표면파를 이용한 TiN 코팅 부재의 특성평가)

  • Kwon, Sung-Duk;Kim, Hak-Joon;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.7-11
    • /
    • 2006
  • Since ceramic layers coated on machinery components inevitably experience the changes in their properties it is necessary to evaluate the characteristics of ceramic coating layers nondestructively for a reliable use of coated components and 4heir remaining life prediction. To address such a need, in the present study, an ultrasonic backward radiation technique is applied to investigate the characteristics of leaky Rayleigh surface waves propagating through the very thin TiN ceramic layers coated on AISI 1045 steel or austenitic 304 steel substrate with three different conditions of surface roughness, coating layer thickness and wear condition. In the experiments performed in the present work, the peak angle and the peak amplitude of ultrasonic backward radiation profile varied sensitively according to three specimen preparation renditions. in fact, this result demonstrates a high possibility of the ultrasonic backward radiation as an effective tool for the nondestructive characterization of the resting layers even in such a thin regime.

Statistical characterisation of end milling of AISI 52100 annealed bearing steel

  • Benghersallah, Mohieddine;Benchiheub, Slimane;Amirat, Abdelaziz
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.137-148
    • /
    • 2018
  • The present paper is a contribution in characterising end milling process of AISI 52100 ball bearing steel through statistical analyses of variance (ANOVA). The latter has been performed to identify the effect of the cutting parameters on the machined surface roughness and the cutting tool life. Wear measurements have been carried on multilayer coated carbide inserts and the respective surface roughness has been recorded. Taguchi's technique has been adapted to conduct the design experiments in terms of orthogonal arrays according to the cutting parameters (cutting speed, feed rate and depth of cut), the type of coating (TiN, TiCN, TiAlN) and lubricating condition. Regression analyses have conducted to the development of simplified empirical models that can be effectively used to predict surface roughness and tool wear in the present milling process.

A Study on the Machinability of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 절삭성에 관한 연구)

  • Park, Jong-Nam;Kim, Jae-Yoel;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.128-133
    • /
    • 2010
  • The Titanium has many superior characteristics which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coated Tool which treated Physical Vapor Deposition. Experimental works are also executed to measure cutting force, tool wear, chip figuration and surface roughness for different cutting conditions. As a result of study. Cutting depth influences on the cutting force much more than the feed rate and the value of the cutting force is the most stable at the depth of 1.0mm. And tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

Effect of Process Parameters on Deposition Characteristics in Fabrication of Coated Tools (코팅공구의 제조에서 공정인자가 증착특성에 미치는 영향)

  • 김종희
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.6
    • /
    • pp.368-375
    • /
    • 1995
  • Thermal CVD method is in general used for the fabrication of TiC/$Al_2O_3$-coated carbide tools. The growth of TiC layer and the coating morphology depended on the chemical composition of the hard metal substrate on which the tool properties were strongly influenced. TiC-coated layer was grown by the diffusion of carbon from the substrate, whereas the growth of $Al_2O_3$ layer was unrelated to the composition of substrate. In the nitride hard coatings of Zr, Nb and Mo metals deposited on high speed steel substrate by magnetron sputtering, the reactivity of the metal elements was decreased with increasing group number in one period of the periodic system. The hard material films exhibited the highest adhesion with the chemical composition of stoichiometry or substoichiometry. The critical load as a measure of adhesion was evaluated using scratch tester. The CVD tools indicated the values of 80 and 40N in the coated layers with proper bonding to the substrate and with $\eta$ phase of 1$\mu\textrm{m}$ in the interface respectively, but the nitride films prepared by sputtering of PVD showed only the values between 10 and 20N.

  • PDF

A Basic Study on the Evaluation of Flat End-mill Coated TiAlN (TiAlN코팅 평 엔드밀의 성능평가에 관한 기초 연구)

  • 유중학;국정한;김문기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.130-136
    • /
    • 2001
  • The purpose of this study is an evaluation of flat end mills to develop appropriate tools for the high speed machining. First of all, several flat end mills which are produced by different makers are selected to analyze the performances of the tools. Experimental works are also executed to measure cutting farce, tool wear and surface roughness for different cutting conditions. And then the results are compared and analyzed for developing optimal cutting tool in the high speed condition.

  • PDF

High Speed Ball End Milling of Hardened Mold Steel (열처리 금형강의 볼엔드밀 고속가공)

  • 양진석;허영무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1418-1423
    • /
    • 2004
  • High speed machining experiment on the heat-treated mold steel(STAVAX and CALMAX of hardness HRc 53) is carried using TiAlN coated ball endmill. Tool life and wear characteristics under the various machining parameters and cooling methods are investigated. Effect of cooling method on life and wear of the tool was compared. For most cases, tool life was not determined by the amount of wear but by th chipping on the cutting edge. It is found that tool manufacturer's cutting parameters generally agrees with the results of this experiment.

  • PDF

The Evaluation of PVD Coated HSS Endmill (HSS엔드밀의 PVD코팅 및 성능평가)

  • Lee, Sang-Seog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.4
    • /
    • pp.103-109
    • /
    • 2012
  • To enhance the cutting performance of high speed steel(HSS) endmill, single and multilayer coating is applied on the substrated of the HSS endmill. Coating material reduces cutting force and enhances resistance against abrasive wear. This paper presents the physical vapour deposition(PVD) coating technology and evaluate the PVD coated HSS endmill. The performance of coated HSS endmills are fifteen times better than uncoated HSS endmill on proposed cutting conditions. The TiAlN monolayer coated endmills(futura nano coating) are better than those of multilayer coated endmills(futura coating) on machined surface and tool wear.