• 제목/요약/키워드: TiC-WC-Co

Search Result 47, Processing Time 0.026 seconds

Synthesis of Ultrafine TiC-5%Co Powder by Using Co Nitrate and TiO(OH)2 Slurry and Evaluation of Sintered Materials Prepared by Mixing WC-Co (Co 질산염과 TiO(OH)2 슬러리를 이용한 초미립 TiC-5%Co 제조 및 WC-Co 분말과의 혼합에 따른 소결체 특성)

  • Hong, Seong-Hyeon;Kim, Byoung-Kee
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.107-113
    • /
    • 2008
  • Ultrafine TiC-5%Co powders were synthesized by spray drying of aqueous solution of TiO$(OH)_2$ slurry and cobalt nitrate, followed by calcination and carbothermal reaction. The oxide powders with carbon powder was reduced and carburized at $900^{\circ}C{\sim}1250^{\circ}C$ under hydrogen atmosphere. During reduction, CO gas was mainly evolved by reducing reaction of oxides. Ultrafine TiC-5%Co powders were easily formed by carbothermal reaction at $1250^{\circ}C$ due to using ultrafine powders as raw materials. The ultrafine WC-TiC-Co alloy prepared by sintering of mixed powder of ultrafine WC-13%Co powder and ultrafine TiC-5%Co powder has higher sintered density and mechanical properties than WC-TiC-Co alloy prepared by commercial WC, TiC and Co powders.

Oxidation Behavior of WC-TiC-TaC Binderless Cemented Carbide under Low Partial Pressure of Oxygen

  • Uchiyama, Yasuo;Ueno, Shuji;Sano, Hideaki;Tanaka, Hiroki;Nakahara, Kenji;Sakaguchi, Shigeya;Nakano, Osamu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.355-356
    • /
    • 2006
  • WC-TiC-TaC binderless cemented carbide was oxidized under low partial pressure of oxygen (50ppm) at 873K for 1 to 20 h. Surface roughness was measured using atomic force microscope, and effect of TiC amount on oxidation behavior of the carbide was investigated. WC phase was oxidized more easily than WC-TiC-TaC solid solution phase. With an increase in TiC amount, WC-TiC-TaC phase increased and the oxidation resistance of the carbide increased.

  • PDF

Friction and Wear of Pressureless Sintered Ti(C,N)-WC Ceramics

  • Park, Dong-Soo;Yun, Shin-Sang;Han, Byoung-Dong;Kim, Hai-Doo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.211-212
    • /
    • 2002
  • Friction and wear of pressureless sintered Ti(C,N)-WC ceramics were studied using a ball-on-reciprocating flat apparatus in open air. The silicon nitride ball and the cemented carbide (WC-Co) ball were used against the Ti(C,N)-WC plate samples. The friction coefficients of the Ti(C,N)-WC samples against the silicon nitride ball and the cemented carbide ball were about 0.57 and 0.3, respectively. The wear coefficient of the sample without WC addition was 5 times as large as that of the sample with 10 mole % WC addition when tested against the silicon nitride ball under 98 N. The higher wear coefficient of Ti(C,N)-0WC was explained in part by larger grain size. Wear occurred mainly by grain dislodgment after intergranular cracking mainly caused by the accumulated stress within the grains.

  • PDF

Growth Behavior of (Ti,W)(C,N) and WC grains in a Co Matrix (Co 액상 내에 공존하는 (Ti,W)(C,N)과 WC입자의 성장 거동)

  • 이보아;윤병권;강석중
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.165-170
    • /
    • 2004
  • Growth behavior of two different types of grains, faceted and rounded, in a liquid matrix has been studied in the (75WC-25TiCN)-30Co system. Powder samples were sintered above the eutectic temperature for various times under a carbon saturated condition. (Ti,W)(C,N) grains with a rounded shape and WC grains with a faceted shape coexisted in the same Co based liquid. With increasing sintering time, the average size of (Ti.W)(C,N) grains increased continuously and very large WC grains appeared. The growth of rounded (Ti,W)(C,N) grains followed a cubic law, r^3-r^3_0$=kt, where r is the average size of the grains, $r_0$ the initial average size, k the proportionality constant and t the sintering time. indicating a diffusion-controlled growth. On the other hand, the growth of the faceted WC grains resulted in a bimodal grain size distribution, showing an abnormal grain growth. These observations show that the growth behavior of different types of grains is governed by their shape, faceted or rounded, even in the same liquid matrix.

Effect of TiC Content on Oxidation Behavior of Sintered WC-TiC-TaC Alloys

  • Tanaka, Hiroki;Mouri, Shigeki;Nakahara, Kenji;Sano, Hideaki;Zheng, Guo Bin;Uchiyama, Yasuo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.352-353
    • /
    • 2006
  • The effect of TiC content on oxidation behavior of the sintered WC-TiC-TaC alloys with 2 mass% TaC and different TiC amounts of 3-45 mass% was investigated through oxidation tests in air at 973K. As a result of the tests, it was revealed that with increasing TiC content in the alloys, mass changes caused by oxidation and thickness of the scale decreased. Thus, it is considered that the main component of the scales changed gradually from $WO_3$ to $TiO_2$ with increasing TiC content in the alloys, and oxygen diffusion through the scale to the alloys was inhibited gradually.

  • PDF

Effect of TiCN/WC Ratio on Grain Shape and Grain Growth in the TiCN-WC-Co System (TiCN-WC-Co 계에서 TiCN/WC 비의 변화에 따른 입자모양과 입자 성장)

  • 이보아;강석중;윤덕용;김병기
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.29-29
    • /
    • 2002
  • 공구강 등 산업용 재료로 널리 사용되는 카바이드 계 재료는 입자 크기 및 분포에 따라 기계적 성질이 변화하므로, 이를 제어하고 조절하는 기술에 관하여 많은 연구가 진행되어 왔다. 본 연구에서는 TiCN-WC-Co 복합초경계 에서 소결 공정 및 조성변화에 따른 입자 모양을 관찰하고 이에 따른 업자 성장 거동을 고찰하였다. 일반적으로 입자 조대화 양상과 고상 입자의 모양과는 밀접한 관계가 있다. 각진 입자의 경우에 는 계면이 원자적으로 singular 하여 원자의 홉착이 어렵기 때문에 임계값 이상의 성장 구동력을 받 는 몇몇 입자만 성장하는 비정상 입자 성장이 일어날 수 있다. 반면에 계면이 rough한 퉁큰 엽자의 경우에는 원자 홉착에 필요한 구동력이 존재하지 않아 성장 구동력을 받는 모든 입자들이 성장하기 때문에 정상 입자 성장을 하게 된다. 이와 같이 입자 모양에 따른 입자 성장 거동은 전체 미세구조를 결정하게 되며, 이에 따른 물리 화학적 물성을 변화시킨다. 이러한 입자 성장 원리를 적용하 면 복합초경계 (TiCN-WC-Co)에서도 입자성장이 억제되고 치밀한 소결체를 제조할 수 있을 것이다. 본 실험에서는 평균입도가 각각 0.1, 1.33, 2$\mu\textrm{m}$인 TiCN, WC, Co 분말을 사용하여 $((I00_{-x)}TiCN+_xWC)-30Co$ (wt%) 조성에서 TiCN/WC 비를 변화시키면서 업자 모양과 입자성장 거동을 관찰하였다. 청량된 분말은 WC 초경 볼로 밀렁하고, 건조한 후, 100 mesh 체로 조립화 하였다. 이 분말을 100 MPa의 압력으로 냉간정수압성형 하고 $10^{-2}$ torr의 진공분위기의 graphite f furnace에서 carbon black으로 packing 하여 액상형성 온도 이상에서 소결하였다. 소결된 시편은 경면 연마하여 주사전자현미경으로 미세 조직을 관찰하였다. TiCN-30Co 조성 시편은 corner-round 모양의 입자 모양으로 소결 시간 증가에 따라 빠른 입자 성장을 나타내었다 .(7STiCN+2SWC)-30Co 조성 시변의 경우 일반적으로 보고된 바와 같이 core/shell 구조를 나타내었으며, core는 TiC-rich 상이었고, shell은 (Ti,W)(C,N) 복합 탄화물 상이었다. WC 함량이 중가함에 따라 입자의 corner-round 영역이 증가하였으며 (SOTiCN-SOWC)-30Co 조성 근처에서는 거의 둥근 형태의 입자 모양을 나타내었다. 또한 TiCN - 30Co 조성 시편에 비하여 WC가 첨가된 시펀들은 작은 평균입자크기를 나타내었다. 본 연구의 결과는 shell 영역 조성 변화는 계면에너지 이방성과 기지상 내의 펑형 입자 모양을 변화시키고 나아가 입자 성장 속도 에도 영향을 미친다는 것을 보여준다.

  • PDF

High-temperature Oxidation of Nano-multilayered AlTiSiN Thin Films deposited on WC-based carbides

  • Hwang, Yeon Sang;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.119-124
    • /
    • 2013
  • Nano-multilayered, crystalline AlTiSiN thin films were deposited on WC-TiC-Co substrates by the cathodic arc plasma deposition. The deposited film consisted of wurtzite-type AlN, NaCl-type TiN, and tetragonal $Ti_2N$ phases. Their oxidation characteristics were studied at 800 and $900^{\circ}C$ for up to 20 h in air. The WC-TiC-Co oxidized fast with large weight gains. By contrast, the AlTiSiN film displayed superior oxidation resistance, due mainly to formation of the ${\alpha}-Al_2O_3$-rich surface oxide layer, below which an ($Al_2O_3$, $TiO_2$, $SiO_2$)-intermixed scale existed. Their oxidation progressed primarily by the outward diffusion of nitrogen, combined with the inward transport of oxygen that gradually reacted with Al, Ti, and Si in the film.

Microstructural Evolution and Properties in Ti(CN)-Co/Ni Cermet Depending on the Starting Material for Incorporation of WC (WC 첨가 방법에 따른 Ti(CN)-Co/Ni 계 서멧트의 미세조직 및 특성변화)

  • Chung, Tai-Joo;Ahn, Sun-Yong;Ahn, Seung-Su;Shin, Myung-Soo;Kim, Hak-Kyu;Kim, Kyung-Bae;Oh, Kyung-Sik;Lee, Hyuk-Jae
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.132-139
    • /
    • 2007
  • In the Ti(CN)-Co/Ni cermet, WC is an effective additive for increasing sinterability and mechanical properties such as toughness and hardness. In this work, WC, (WTi)C and (WTi)(CN) were used as the source of WC and their effects were investigated in the respect of microstructural evolution and mechanical properties. Regardless of the kinds of WC sources, the hard phase with dark core and bright rim structure was observed in the Ti(CN)-Co/Ni cermet under the incorporation of relatively small amount of WC. However, hard phases with bright core began to appear and their frequency increased with the increase of all kinds of WC source addition. The ratio of bright core to dark one in the (TiW)(CN)-Co/Ni cermet was greatest under the incorporation of (WTi)C compared at the same equivalent amount of WC. The mechanical properties were improved with the addition of WC irrespective of the kinds of sources, but the addition of (WTi)(CN) was less effective for the increase of fracture toughness.