• Title/Summary/Keyword: TiC-Ni-Mo

Search Result 53, Processing Time 0.023 seconds

A Study on Self-Propagating High-Temperature Synthesis of TiC-Ni-Mo Based Cermet (SHS공정에 의한 TiC-Ni-Mo 분말 합성 및 소결체 제조)

  • 송인혁;전재호;한유동
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.749-756
    • /
    • 1998
  • TiC-Ni and TiC-Ni-Mo cermet powders were produced by Self-propagating High temperature Synthesis (SHS) process. The cooling rate of synthesized powders were controlled by using the V-shaped copper jig and the carbide size decreased with increasing the cooling rate I. e decreasing the width of copper jig Round shape carbide particles were produced after SHS reaction in TiC-Ni as well as TiC-Ni-Mo powders. Local segregation of Mo rich phases was observed in SHS powder of TiC-Ni-Mo and the uneven dis-triobution of Mo promoted the faster growth rate of carbide particles during sintering compared to the same composition specimen with commercial TiC powder. Howogeneous microstructure of TiC-Ni-Mo cermet was obtained when the elemental Mo powder was mixed with the SHS powder of TiC-Ni.

  • PDF

The Effects of Carbon and $Mo_2C$ Content on the Microstructure and Hardness of $TiC-Ni_3Al$ cermet ($TiC-Ni_3Al$ Cermet의 조직과 경도에 미치는 탄소량과 $Mo_2C$ 첨가의 영향)

  • 손호민
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.62-68
    • /
    • 1999
  • The effects of the carbon content ranging from 17.5 to 21.0 wt.% in TiC-30vol.% $Ni_3Al$ cenmet and the $Mo_2C$ content raging from 0 to 30 wt.% in TiC-20 vol.% $Ni_3Al$ cermet were investigated in the relation to the microstures and harbness. The speciment were sintered at 140$0^{\circ}C$, 143$0^{\circ}C$ and 145$0^{\circ}C$ for 60minutes. The results were summarized as follows; 1) The shrinkages and relative densitites of the specimens were incrased up to 20.0 wt.% C and then decreased. 2) The grains of TiC were almost the same size with the different content of carbon. Free carbons were appeared on the microstrures when carbon was added over 20.5 wt.% while TiC and $Ni_3Al$l were formed when carbon was added below 20.0 wt.%; 3) The lattice parameters of the $Ni_3Al$ and TiC phases were increased up to 20.5 wt.% C, and then saturated. 4) The hardess was increased up to 20.0 wt.% C, and then decreased. 5) The $Mo_2C$ made the TiC grains fine and the surrounding structure around TiC gains. 6) The micropores were decreased with increasing the binder and the sintering temperature. 7) The lattice parameter of the $Ni_3Al$l ana TiC were almost the samp up to 10 wt.% $Mo_2C$ and then decreased. 8) The hatdness was increased up to 5wt.% $Mo_2C$ and then decreased owing to the micrpores. 9) The more the binder phase, the higher the relative density and the proper $Mo_2C$ amount of $TiC-Ni_3Al$ cermets were obtained.

  • PDF

Formation of a Core/Rim Structure in Ti(C, N)-based Cermets (Ti(C, N)계 써메트의 유심구조 형성거동)

  • Kim, Suk-Hwan
    • Journal of Powder Materials
    • /
    • v.13 no.1 s.54
    • /
    • pp.10-17
    • /
    • 2006
  • Model experiment was introduced to obtain the formation of a core/rim structure by only liquid phase reaction in Ti(C, N)-based cermet alloys. Infiltrated Ti(C, N)-Ni, $MO_2C-Ni$, and TaC-Ni cermets were bonded to sandwiched specimen by heat treatment $1450^{\circ}C$ for 5hr. With nitrogen addition, both (Ti, Mo) (C, N) and (Ti, Ta) (C, N) rim structure was nucleated around comer of cuboidal Ti(C, N) core. However, equilibrium shapes of(Ti, Mo) (C, N) and (Ti, Ta) (C, N) rim were different possibly due to the effect of interface energy. The core/rim and rim! binder interfaces were parallel to each other with TaC addition, while rotated to each other with $MO_2C$ addition.

Effect of Sinter/HIP Technology on Properties of TiC-NiMo Cermets

  • Kollo, Lauri;Pirso, Juri;Juhani, Kristjan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.627-628
    • /
    • 2006
  • The present work is a study on the argon gas pressure effects of Sinter/HIP sintering on microstructure and strength of different grades of TiC-NiMo cermets. Titanium carbide in the composition of different grades of TiC-NiMo cermets was ranged from 40 to 80 wt.% and the ratio of nickel to molybdenum in the initial powder composition was 1:1, 2:1 and 4:1 respectively. On the sintered alloys, the main strength characteristic, transverse rupture strength (TRS) was measured. Furthermore, the microstructure parameters of some alloys were measured and the pressure effect on pore elimination was evaluated. All the results were compared with common, vacuum sintered alloys. The TRS values of TiC-NiMo cermets could be considerably improved by using Sinter/HIP technique, for high-carbide fraction alloys and for alloys sintered at elevated temperatures.

  • PDF

n-type GaN 위에 형성된 Ti/Al/Mo/Au 및 Ti/Al/Ni/Au 오믹 접합의 isolation 누설전류 분석

  • Hwang, Dae;Ha, Min-U;No, Jeong-Hyeon;Choe, Hong-Gu;Song, Hong-Ju;Lee, Jun-Ho;Park, Jeong-Ho;Han, Cheol-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.266-267
    • /
    • 2011
  • 질화갈륨(GaN)은 높은 전자이동도 및 높은 항복전계를 가지며 낮은 온저항으로 인하여 에너지효율이 우수하기 때문에 고출력 전력소자 분야에서 많은 관심을 받고 있다. GaN을 이용한 고출력 전력소자의 경우 상용화 수준에 근접할 만한 기술적 진보가 있었으나, 페르미 레벨 고정(Fermi-level pinning) 현상, 소자의 누설전류 등 아직 해결되어야 할 문제를 갖고 있다. 본 연구에서는 실리콘 기판 위에 성장된 GaN 에피탁시를 활용한 고출력 전력소자의 누설전류를 억제시키기 위해 오믹 접합 중 Au의 상호확산을 억제하는 중간층 금속(Mo or Ni)을 변화시켰으며 오믹 열처리 온도에 따른 특성을 비교 연구하였다. $Cl_2$$BCl_3$를 이용하여 0.6 ${\mu}m$ 깊이의 메사 구조가 활성영역을 형성하였고, Si 도핑된 n-GaN 위에 Ti/Al/Mo/Au (20/100/25/200 nm) 와 Ti/Al/Ni/Au (20/100/25/200 nm) 오믹 접합을 각각 설계, 제작하였다. 오믹 열처리시의 GaN 표면오염을 방지하기 위해 $SiO_2$ 희생층을 증착하였다. 오믹 접합 형성을 위해 각 750$^{\circ}C$, 800$^{\circ}C$, 850$^{\circ}C$에서 30초간 열처리를 진행 하였으며, 이후 6 : 1 BOE 용액으로 $SiO_2$ 희생층을 제거하였다. 750, 800, 850$^{\circ}C$에서 Ti/Al/Mo/Au 구조의 오믹 접합 저항은 각 2.56, 2.34, 2.22 ${\Omega}$-mm 이었으며, Ti/Al/Ni/Au 구조의 오믹 접합 저항은 각 43.72, 2.64, 1.86 ${\Omega}$-mm이었다. Isolation 누설전류를 측정하기 위해서 두 개의 오믹 접합 사이에 메사 구조가 있는 테스트 구조를 제안하였다. Isolation 누설전류는 Ti/Al/Mo/Au 구조에서 두 오믹 접합 사이의 거리가 25 ${\mu}m$이고 100 V일 때 750, 800, 850 $^{\circ}C$의 열처리 온도에서 각 1.25 nA/${\mu}m$, 2.48 nA/${\mu}m$, 8.76 nA/${\mu}m$이었으며, Ti/Al/Ni/Au 구조에서는 각 1.58 nA/${\mu}m$, 2.13 nA/${\mu}m$, 96.36 nA/${\mu}m$이었다. 열처리 온도가 증가하며 오믹 접합 저항은 감소하였으나 isolation 누설전류는 증가하였다. 750$^{\circ}C$ 열처리에서 오믹 접합 저항은Ti/Al/Mo/Au 구조가 Ti/Al/Ni/Au 구조보다 약 17배 우수하였고, 850$^{\circ}C$ 고온의 열처리 경우 Ti/Al/Mo/Au 구조의 isolation 누설전류는 8.76 nA/${\mu}m$로 Ti/Al/Ni/Au의 누설전류 96.36 nA/${\mu}m$보다 약 11배 우수하였다. Ti/Al/Mo/Au가 Ti/Al/Ni/Au 보다 오믹 접합 저항과 isolation 누설전류 측면에서 전력용 GaN 소자에 적합함을 확인하였다.

  • PDF

Preparation of Carbide Composites for Ti-C-Mo system by HPCS(High-Pressure self-Combustion Sintering) Process (고압연소소결(HPCS)법을 이용한 Ti-C-Mo계 탄화물 복합체의 제조)

  • 최장민;이근행;류종화;조원승;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.451-458
    • /
    • 1999
  • TiC-Mo2C composites were prepared from Ti-C-Mo system by HPCS which has a great advantage of simulataneous synthesis and sintering In this study physical properties and microstructures of the com-posites were measured and observed to compare the sintering effects of Ni and Co each other : The results showed that the role of 5 wt% Ni in the sintering of the carbide composites was superior to that of 5wt% Co and the optimum content of Mo in the Ti-C-Mo system was 20wt% The carbide composites prepared under these two conditions had the best properties with 1.0% in apparent porosity 97.6% in relative density 19.1GPa in Vickers hardness and 5.3MPa$.$m1/2 in fracture toughness.

  • PDF

Quantitative Investigation of Grain Growth in Carbide Added(Mo$_2$C, ZrC and WC) to TiC-Ni Matrix Cermets

  • Kim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • The growth of solid particles in TiC-XC-2vo1.% and TiC-XC-30vo1.% Ni alloys, (where X=Zr, W or Mo) was fitted to the equation of the form $d^3$-${do}^3$=Kt during the liquid phase sintering at 1,673K. Also, the grain growth behavior decreased markedly with the addition of ${MO}_2$C or WC and increased with the addition of zrC. The contiguity was greater in the alloys with a smaller growth rate constant and especially, decreased by increasing the Ni content in the TiC-${MO}_2$C-Ni alloy. In addition, the effect of the addition of carbide on the grain growth of 2 vo1.% Ni alloys was found to be similar to that of 30vo1.% Ni alloys. Consequently, the grain growth mechanism cannot be explained by the usual solution / reprecipitation process, but can be explained in terms of a new growth velocity equation, which includes the effects of contiguous carbide grain boundaries in restricting the overall grain growth, as well as the area of the solid / liquid interface in the alloy.

Behaviors of Grain Growth in Carbide Added TiC Matrix Cermets (탄화물첨가 TiC기지 서멧의 입성장 거동)

  • Shin, Soon-GI;Lee, Jun-Hee;Lee, Hwa-Sang
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.825-830
    • /
    • 2002
  • The growth rate of solid grains in TiC-XC-2vol% and TiC-XC-30vo1% Ni cermets, where X=Zr, W or Mo, was fitted to an equation of the form $d^3$-$do^3$=Kt. The grain growth behavior during liquid phase sintering at 1673K decreased markedly with addition of $Mo_2$C or WC and increased with addition of ZrC. The contiguity ratio was greater in the alloys with smaller growth rate constant and decreased with increasing Ni content in the $TiC-Mo_2$C-Ni cermet. The grain growth mechanism could be explained by the effect of contiguous grain boundaries in restricting the overall grain growth.

New Hypothesis "Exhaustion of Diffusion-Contributable Vacancies in Core/Rim Structure"

  • Hayshi, Koji;Yanaba, Yutaka
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.8-8
    • /
    • 2002
  • TiC core/(Ti,Mo)C rim structure in TiC-$Mo_2C$-Ni base cermet which is generally prepared by sintering below 145$0^{\circ}C$ had been believed to be generated by the solid diffusion of Mo atoms 1 into TiC grains (D. Moskowitz and M.Humenik, 1r.:1966). Afterward, it was clarified that the c core/rim structure is generated by solution/re-precipitation mechanism : (1) $Mo_2C$ grains and s small TiC grains dissolve into the Ni liquid, (2) the dissolved Mo, Ti and C atoms migrate to the s surface of TiC coarse grains, (3) the Mo, Ti and C precipitate on the surface of TiC coarse g grains and form (Ti,Mo)C solid solution rim, and (4) the Ostwald ripening (grain growth by s solution/re-precipitation mechanism) of TiC-core/(Ti,Mo)-rim grains continues, and thus the w width of (Ti,Mo)C rim (at the same time, the grain size) increases with sintering time, etc. ( (H.Suzuki, K.Hayashi and O.Terada: 1973). The TiC-core was found not to disappear even by s sintering at 190$0^{\circ}C$ (ibid.: 1974) Recently, FeSi core/$Fe_2Si_5$-rim structure in Fe-66.7at%Si thermoelectric aIloy was found to also h hardly shrink and disappear by long heating at an appropriate temperature (1999: M.Tajima and K K.hayashD. Then, the authors considered its cause, and clarified experimentaIly that the disappearance of FeSi-core/$Fe_2Ski_5$-rim structure could be attributed to the exhaustion of diffusion-contributable vacancies in core/rim structure (N.Taniguchi and K.Hayashi:2001). At p present, the authors and my coworker are investigating whether the non-disappearance of TiC c core can be explained also from the new hypothesis "Exhaustion of diffusion-contributable v vacancies in corelrim structure".ure".uot;.

  • PDF