• Title/Summary/Keyword: TiAu4

Search Result 22, Processing Time 0.017 seconds

Traveling-wave Ti:LiNbO3 optical modulator capable of complete switching (완전 스위칭이 가능한 Ti:LiNbO3 진행파 광변조기)

  • 곽재곤;김경암;김영문;정은주;피중호;박권동;김창민
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.545-554
    • /
    • 2003
  • Design of the optical modulator composed of a three-waveguide coupler and CPW traveling-wave electrodes was carried out. Switching phenomena of three-waveguide couplers were analyzed by using the coupled mode theory, and the coupling-lengths of the devices were calculated by means of the FDM. CPW traveling-wave electrodes were analysed by the CMM and SOR simulation technique in order to find the conditions of phase-velocity and impedance matching. Traveling-wave modulators were fabricated on z-cut LiNbO$_3$ substrate. Ti was in-diffused in LiNbO$_3$ to make waveguides and Au electrodes were built on the waveguides by the electrolyte technique. The fabricated modulator chip was end-polished, pig-tailed and packaged in a brass mount with K-connector. The insertion loss and the switching voltage of the optical modulator were about 4㏈ and 19V, respectively. Network analyzer was used to obtain the S parameter and the corresponding RF response. From the measurement, parameters of the traveling-wave electrodes were extracted to be Z$_{c}$= 45 Ω, N$_{eff}$=2.20, and $\alpha$$_{0}$=0.055/cm√GHZ. The measured optical response R($\omega$) was compared with the theoretically estimated one, showing both responses agree well. The measurement results revealed that 3㏈ bandwidth turned out to be about 13 GHz.

Preparations of Universal, Functionalized Long-Chain Alkylthiol Linkers for Self-assembled Monolayers (자기조립단분자막을 위한 보편적이고 기능화된 긴 사슬 알킬티올 연결자의 제조)

  • Yoo, Dong-Jin;Lee, Kyong-Sub;Kim, Ae-Rhan;Nahm, Kee-Suk
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.330-337
    • /
    • 2011
  • In this research, the preparation processes for making a series of $\omega$-mercapto alkylamine 1 and $\omega$-mercapto alkanoic acid 2 useful for studying of the self-assembled monolayer(SAM) are described. The preparation methods of the first goal materials, $\omega$-mercapto alkylamines 1 were carried out as follows: First, $\omega$-phthalimide alkanol 3 was synthesized from commercially available potassium phthalimide derivatives and $\omega$-bromoalkanol in DMF at $80{^{\circ}C}$ via substitution reaction. After refluxing $\omega$-phthalimide alkanol 3 with hydrazine hydrate in ethanol followed by treating with c-HCl, $\omega$-aminoalkanol 4 was obtained in 76-98% yield, accompanied with side-product 5. Bromination of hydroxyl moiety of $\omega$-aminoalkanol 4 using aqueous hydrobromic acid furnished $\omega$-bromoamine 6 in 34-97% yields. Substitution reaction 6 with thiourea in 95% ethanol gave $\omega$-aminoalkanthiuronium 7, which was treated with aqueous strong base and aqueous strong sulfuric acid gave desired products, $\omega$-mercapto alkylamines 1 through overall 5 steps. The second target material, $\omega$-mercapto alkanoic acid 2 was prepared via 2 steps. $\omega$-bromo alkanoic acid was reacted with thiourea to give $\omega$-thiourea alkanoic acid 7 in 69-85%, which was treated with aqueous strong base and strong acid to furnish $\omega$-mercapto alkanoic acid 2 in 50-98%. The fabricated long-chain alkylthiol(LCAT) can be used as linkers to immobilize protein, enzyme and various kinds of biomolecules on the surface of metallic materials(Au, Pt, Ti) by SAM, and can be useful chemical tools for the application study on the surface modification of metallic materials.