• 제목/요약/키워드: TiAl alloys

검색결과 335건 처리시간 0.023초

Hf, Ta가 첨가된 Ti-l5Sn-4Nb계 생체용 합금의 미세조직 및 기계적 성질에 관한 연구 (A Study on Microstructure and Mechanical Properties of Hf, Ta Added Ti-l5Sn-4Nb system Alloys for Biomaterial)

  • 김대환;이경구;박효병;이도재
    • 한국표면공학회지
    • /
    • 제33권4호
    • /
    • pp.251-260
    • /
    • 2000
  • Ta and Hf added Ti-l5Sn-4Nb alloys without V and Al elements for biomaterial were melted by arc furnace in response to recent concerns about the long term safety of Ti-6Al-4V alloy. All specimens were homogenized at $1000^{\circ}C$ and solution treatment was performed at $812^{\circ}C$ and aging treatment at $500^{\circ}C$. The microstructure and mechanical properties were analysed by optical micrograph, hardness tester and instron. Ti-l5Sn-4Nb system alloys showed widmanstatten microstructure which is typical microstructure in $\alpha$$\beta$ type Ti alloys. The Ti-l5Sn-4Nb-2Hf and Ti-l5Sn-4Nb-2Ta alloys showed better hardness and tensile strength compared with Ti-6Al-4V. The result of XPS analysis, Ti-l5Sn-4Nb alloy in air atmosphere consisted of $TiO_2$, SnO and NbO.

  • PDF

치과용(齒科用) 순(純) 타이타늄 스크랩을 재활용(再活用)한 Ti-6Al-4V 합금(合金)의 제조(製造) 및 산소(酸素) 제어(制御) (Preparation and oxygen control of Ti-6Al-4V alloys by recycling dental pure Ti scraps)

  • 오정민;이백규;최국선;임재원
    • 자원리싸이클링
    • /
    • 제21권1호
    • /
    • pp.60-65
    • /
    • 2012
  • 본 연구는 치과용 순 타이타늄 스크랩을 재활용하여 진공 아크 용해에 의해 Ti-6Al-4V 합금을 제조하였고, 이때 산소함량이 다르게 제조된 Ti-6A1-4V 합금의 물성을 평가하였다. 사용된 타이타늄 스크랩은 치과용 임플란트 재료로써 ASTM G1~G4 등급으로 산소함량이 다르게 진공 아크 용해에 의해 건전한 잉곳을 만든 후 Ti-6Al-4V 합금을 제조하였다. 합금 제조시 875 torr의 가압 아르곤 분위기에서 용해하였을 때 Al 조성의 손실이 방지됨을 확인하였다. 제조된 Ti-6Al-4V의 산소함량이 1170~3340 ppm으로 증가함에 따라 Ti-6Al-4V의 경도가 증가하여 순 타이타늄의 경향과 동일함을 확인하였다. 따라서 본 연구를 통해서 Ti-6Al-4V 합금 제조에 있어서 진공 아크 용해에 의해 치과용 순 타이타늄 스크랩의 재활용 가능성을 확인하였다.

Si 첨가가 TiAl 합금의 내산화성에 미치는 영향 (Effect of Si on the High Temperature Oxidation of TiAl Alloys)

  • 김성훈;김승언;최송천;이동복
    • 한국표면공학회지
    • /
    • 제33권1호
    • /
    • pp.3-9
    • /
    • 2000
  • Arc-melted alloys of TiAl-(o.25, 0.5, 1.0at%) Si were isothermally oxidized at 800, 900 and $1000^{\circ}C$ in air for 60hr. It was found that the oxidation resistance of the prepared TiAl-Si alloys was much better than that of pure TiAl, being progressively increasing with an increase in the Si content. This was attributed to the formation of $SiO_2$in addition to ($TiO_2$+$Al_2$$O_3$) oxides which formed in TiAl alloys with and without silicon additions. However, the silica formation within the oxide layer unfortunately accelerated the oxide scale spallations. During oxidation, all the elements in the base alloy diffused outward, whereas oxygen from the atmosphere diffused inward. The oxides were primarily composed of an outer thick $TiO_2$layer, an intermediate diffuse $Al_2$$O_3$layer and an inner $TiO_2$layer. A small amount of $SiO_2$was present all over the oxide scale and some voids were found around the intermediate layer.

  • PDF

적층가공 (3D 프린팅) Ti-6Al-4V합금의 국부부식 저항성 평가를 위한 임계국부부식온도와 임계국부부식전위 측정방법의 비교 (Measurement of Localized Corrosion Resistance in Additively Manufactured Ti-6Al-4V Alloys Using Electrochemical Critical Localized Corrosion Temperature (E-CLCT) versus Electrochemical Critical Localized Corrosion Potential (E-CLCP))

  • 서동일;이재봉
    • Corrosion Science and Technology
    • /
    • 제20권1호
    • /
    • pp.37-43
    • /
    • 2021
  • Additively manufactured (AM) Ti-6Al-4V alloys exhibit a dominant acicular martensite phase (α'), which is characterized by an unstable energy state and highly localized corrosion susceptibility. Electrochemical critical localized corrosion temperature (E-CLCT, ISO 22910: 2020) and electrochemical critical localized corrosion potential (E-CLCP, ISO AWI 4631: 2021) were measured to analyze the localized corrosion resistance of the AM Ti-6Al-4V alloy. Although E-CLCP was measured under mild corrosive conditions such as human body, the validity of evaluating localized corrosion resistance of AM titanium alloys was demonstrated by comparison with E-CLCT. However, the mechanisms of resistance to localized corrosion on the as-received and heat-treated AM Ti-6Al-4V alloys under E-CLCT and E-CLCP differ at various temperatures because of differences in properties under localized corrosion and repassivation. The E-CLCT is mainly measured for initiation of localized corrosion on the AM titanium alloys based on temperature, whereas the E-CLCP yields repassivation potential of re-generated passive films of AM titanium alloys after breaking down.

치과주조용 Ti-X%Cu(X=2,5,10)합금의 미세조직 및 경도 (Microstructure and Hardness of Ti-X%Cu(X=2,5,10) Alloys for Dental Castings)

  • 정종현
    • 대한치과기공학회지
    • /
    • 제31권3호
    • /
    • pp.9-14
    • /
    • 2009
  • This study evaluated the mechanical properties of Ti-Cu alloys with the hope of developing an alloy for dental casting with better mechanical properties than unalloyed titanium. Ti-Cu alloys with four concentrations of Cu(2,5,10wt%) were made in an argon-arc melting furnace. The microstructure and micro-Vickers hardness were determined. X-ray diffraction pattern test was performed on the polished specimens. The microstructure of 2%Cu and 5%Cu alloys are shown acicular ${\alpha}Ti$ phase formed on the surfaces of previously formed $\beta$grains. The 10%Cu alloys has essentially a eutectoid structure; this structure includes lamella of ${\alpha}Ti$ and $Ti_2Cu$ phase that transformed from ${\alpha}Ti$ at the eutectoid temperature. The micro-Vickers hardness of CP Ti specimens was significantly(p<0.05) lower than that of any of the other alloys. Among the Ti-Cu alloys, the 10%Cu alloys exhibited a significantly(p<0.05) higher hardness value. but lower than that of Ti-6%Al-4%V alloy. From these results, it was concluded that new alloys for dental castings should be designed as Ti-Cu based alloys if other properties necessary for dental castings were obtained.

  • PDF

금속간 화합물 $Al_3Ti-Cr$의 부식특성 (Corrosion Characteristics of $Al_3Ti-Cr$ Intermetallics)

  • 유용재;김성훈;최윤제;김정구;이동복
    • 한국재료학회지
    • /
    • 제10권6호
    • /
    • pp.398-402
    • /
    • 2000
  • 유도 용해후 열기계적 처리를 거친 3종류의 $Al_3Ti-Cr합금, 즉 Al_{67}Ti_{25}Cr_8,\;Al_{66}Ti_{24}Cr_{10}$ 및 Al_{59}Ti_{26}Cr_{15}에 대해 2.5% NaCl 용액 내에 부삭시험과 1000, 1100 및 $1200^{\circ}C$에서의 고온 산화시험을 실시하였다. 전기화학적 평가결과에서 Cr조성이 증가함에 따라 국부부식에 대한 내식성이 증가하였으며, 부동태 피막의 취성파괴를 방지하였다. XPS결과는 $Al_3Ti-Cr$합금의 부동태 피막은 주로 $Al_2O_3$로 구성되어 있으며, $TiO_2$$Cr_2O_3$도 공존하고 있음을 알 수 있었다. 고온 내산화성은 모든 시편이 전체적으로 뛰어난 내산화성을 지니고 있었는데, 구체적으로는 $Al_{59}Ti_{26}Cr_{15},\;Al_{66}Ti_{24}Cr_{10}\;및\;Al_{67}Ti_{25}Cr_8$의 순으로 증가하였다. 이는 합금내의 Al 함량이 증가할수록 $Al_2O_3$보호피막의 형성이 용이하였기 때문이었다.

  • PDF

Ti-Al-Fe계 합금의 고온산화거동에 미치는 Fe의 영향 (Effect of Fe on the High Temperature Oxidation of Ti-Al-Fe Alloys)

  • 윤장원;현용택;김정한;염종택;윤석영
    • 한국재료학회지
    • /
    • 제21권7호
    • /
    • pp.357-363
    • /
    • 2011
  • In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at $700^{\circ}C$ and $800^{\circ}C$ for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At $700^{\circ}C$, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at $800^{\circ}C$, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of $Al_2O_3$, a diffusion resistance layer, is remarkably hindered by a relative decrease of the ${\alpha}$ volume fraction. This is because Fe addition increases the volume fraction of ${\beta}$ phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.

Ti-(44-54)at.%Al 열처리 주조합금의 미세조직과 인장특성에 관한 연구 (A Study on the Microstructures and Tensile Properties of Heat-Treated Cast Ti-(44-54)at.%Al Alloys)

  • 정재영
    • 한국주조공학회지
    • /
    • 제37권6호
    • /
    • pp.199-206
    • /
    • 2017
  • In this study, the variations of microstructures and tensile properties of Ti-(44-54)at.%Al binary alloys were investigated. The heat-treated microstructure depended greatly on their solidification structure and annealing temperature. We measured the variations of volume fractions of primary and secondary lamellar structure as a function of the heat treatment temperature in a Ti-47at.%Al alloy. The variation of ductility as a function of Al content was in good agreement with the change of fracture mode in the tensile fracture surface. It can be inferred that the variations of yield stress and hardness of ${\gamma}$ phase in a single ${\gamma}$-phase field region are enhanced by anti-site defects created by deviations from the stoichiometric composition. In a Ti-47at.%Al alloy within the (${\alpha}_2+{\gamma}$) two-phase field, the yield stress tended to be the maximum at a near equal volume fraction of lamellar and ${\gamma}$ grains. The ductility depended sensitively on the overall grain size and Al content. The calculation of fracture strain using Chan's model indicated that the change of ductility as a function of annealing temperature was primarily determined by the variations in the overall grain size and lamellar volume fraction.

알루미늄의 결정입자 미세화에 미치는 AlTi5B1 첨가의 영향 (The Effects of AlTi5B1 Additions on the Grain Refinement of Aluminium)

  • 김정근
    • 한국주조공학회지
    • /
    • 제9권4호
    • /
    • pp.320-326
    • /
    • 1989
  • Titanium-Boron-Aluminium master alloys are used extensively to grain-refine a wide range of aluminium alloys. This experiment was performed by various amounts of AlTi5B1 addition to the technical aluminium alloys, and also by changing cast temperature and hold time of the melts. The macrostructures were shown that with increasing the addition of AlTi5B1 to the melts, the grain became finer. In the case of cast temperature high enough over $900^{\circ}C$, the grain became coarser, but hold time change not affected on the grain refinement. Particles of $TiAl_3$, and $TiB_2$ were found in the grains and grainboundaries. The important role of grain refinement in this experiment were mainly $TiAl_3$, and also $TiB_2$ those have been confirmed in TEM, SEM, EDS, WDX and X-ray diffraction.

  • PDF

Study on the Mechanical Properties of TiAl Crystals Grown by a Floating Zone Method

  • Han, Chang-Suk;Kim, Sang-Wook
    • 한국재료학회지
    • /
    • 제27권7호
    • /
    • pp.369-373
    • /
    • 2017
  • Unidirectionally solidified TiAl alloys were prepared by optically-heated floating zone method at growth rates of 10 to 70 mm/h in flowing argon. The microstructures and tensile properties of these crystal bars were found to depend strongly on the growth rate and alloy composition. TiAl alloys with composition of 47 and 50 at.%Al grown under the condition of 10 mm/h showed $Ti_3Al({\alpha}_2)/TiAl({\gamma})$ layer structures similar to single crystals. As the growth rate increased, the alloys with 47 and 50 at.%Al compositions showed columnar-grain structures. However, the alloys fabricated under the condition of 10 mm/h had a layered structure, but the alloy with increased growth rate consisted of ${\gamma}$ single phase grains. The alloy with a 53 at.%Al composition showed a ${\gamma}$ single phase regardless of the growth rate. Room-temperature tensile tests of these alloys revealed that the columnar-grained material consisting of the layered structure showed a tensile ductility of larger than 4 % and relatively high strength. The high strength is caused by stress concentration at the grain boundaries; this enhances the secondary slip or deformation twinning across the layered structure in the vicinity of the grain boundaries, resulting in the appreciable ductility.