• Title/Summary/Keyword: TiAl합금

Search Result 559, Processing Time 0.027 seconds

Development of New Ni-based Cast Superalloy with Low Density and High Temperature Capability for Turbine Wheel in Automotive Turbocharger (자동차 터보충전기 터빈휠용 경량 고내열 주조 Ni기 초합금의 개발)

  • Yutaro Oki;Yoshinori Sumi;Yoshihiko Koyanagi
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.392-397
    • /
    • 2022
  • In order to compliant the stringent exhaust emission regulations, higher fuel efficiency and cleaner exhaust gas in combustion engines have been required. To improve combustion efficiency, an exhaust gas temperature is increasing, therefore higher temperature resistance is required for components in exhaust system, especially turbine wheel in turbocharger. IN100 looks quite attractive candidate as it has high temperature properties with low density, however it has low castability due to poor ductility at high temperature. In this study, the balance of Al and Ti composition was optimized from the base alloy IN100 to improve the high temperature ductility by expanding the γ single phase region below the solidification temperature, while obtaining the high temperature strength by maintaining the volume fraction of γ' phase equivalent to IN100 around 1000℃. Furthermore, the high temperature creep rupture life increased by adding a small amount of Ta. The alloy developed in this study has high castability, low density and high specific strength at high temperature.

Evaluation of Performance of Artificial Neural Network based Hardening Model for Titanium Alloy Considering Strain Rate and Temperature (티타늄 합금의 변형률속도 및 온도를 고려한 인공신경망 기반 경화모델 성능평가)

  • M. Kim;S. Lim;Y. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.96-102
    • /
    • 2024
  • This study addresses evaluation of performance of hardening model for a titanium alloy (Ti6Al4V) based on the artificial neural network (ANN) regarding the strain rate and the temperature. Uniaxial compression tests were carried out at different strain rates from 0.001 /s to 10 /s and temperatures from 575 ℃ To 975 ℃. Using the experimental data, ANN models were trained and tested with different hyperparameters, such as size of hidden layer and optimizer. The input features were determined with the equivalent plastic strain, strain rate, and temperature while the output value was set to the equivalent stress. When the number of data is sufficient with a smooth tendency, both the Bayesian regulation (BR) and the Levenberg-Marquardt (LM) show good performance to predict the flow behavior. However, only BR algorithm shows a predictability when the number of data is insufficient. Furthermore, a proper size of the hidden layer must be confirmed to describe the behavior with the limited number of the data.

Synthesis and Properties of Amorphous Matrix Composites using Cu-based/Ni-based Amorphous Powders (Cu계 및 Ni계 비정질 합금 분말을 이용한 비정질기지 복합재의 제조 및 특성)

  • Kim Taek-Soo;Lee Jin-Kyu;Kim Hwi-Jun;Bae Jung-Chan
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.406-412
    • /
    • 2005
  • This work is to present a new synthesis of metallic glass (MG)/metallic glass (MG) composites using gas atomization and spark plasma sintering (SPS) processes. The MG powders of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ (CuA) and $Ni_{59}Zr_{15}Ti_{13}Nb_7Si_3Sn_2Al_1$(NiA) as atomized consist of fully amorphous phases and present a different thermal behavior; $T_g$ (glass transition temperature) and $T_x$ (crystallization temperature) are 716K and 765K for the Cu base powder, but 836K and 890K for the Ni base ones, respectively. SPS process was used to consolidate the mixture of each amorphous powder, being $CuA/10\%NiA\;and\;NiA/10\%CuA$ in weight. The resultant phases were Cu crystalline dispersed NiA matrix composites as well as NiA phase dispersed CuA matrix composites, depending on the SPS temperatures. Effect of the second phases embedded in the MG matrix was discussed on the micro-structure and mechanical properties.

Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere (리튬용융염계 산화성분위기에서 초합금의 고온 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Chung Jun-Ho;Oh Seung-Chul;Seo Chung-Seok;Park Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.813-820
    • /
    • 2004
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of $LiCl-Li_{2}O$ under oxidation atmosphere was investigated at $650^{\circ}C\;for\;72\sim360$ hours. At $3\;wt\%\;of\;Li_{2}O$, Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to $8\;wt\%\;of\;Li_{2}O$, Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed $Li(Ni,Co)O_2,\;LiNiO_2\;and\;LiTiO_2\;and\;Cr_{2}O_3$ on Haynes 263, $Cr_{2}O_3,\;NiFe_{2}O_4,\;LiNiO_2,\;Li_{2}NiFe_{2}O_4,\;Li_{2}Ni_{8}O_10$ and Ni on Haynes 75, $Cr_{2}O_3,\;(Al,Nb,Ti)O_2,\;NiFe_{2}O_4,\;and\;Li_{2}NiFe_{2}O_4$ on Inconel X-750 and $Cr_{2}O_3,\;NiFe_{2}O_4\;and\;CrNbO_4$ on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.

The Magnetic Properties of Fe-Hf-C Soft Magnetic Thin Films (Fe-Hf-C계 연자성 박막합금의 자기적 성질)

  • 최정옥;이정중;한석희;김희중;강일구
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 1993
  • Thin films of soft magnetic Fe-Hf-C alloys with nanoscale crystallites were investigated in this study. The films were fabricated by an RF diode magnetron sputtering apparatus and subsequently annealed in vacuum. The soft magnetic properties of the films were observed to differ depending on the different substrates such as Corning 7059, $CaTiO_3$ and $Al_2O_3-TiC$ with various underlayer(Cr, $SiO_2$) thickness. This results may be due to the interdiffusion between the substrate and the magnetic layer and/or between the underlayer and the magnetic layer, rather than the microstructural change such as grain size. The Fe-Hf-C films with high permeability up to 4000(at 1 MHz) and saturation magnetization up to 16 kG were obtained in the vicinity of phase boundary between the crystalline and amorphous state when the size of ${\alpha}-Fe$ grains is about 5 nm. And also the films were found to have thermal stability up to $600^{\circ}C$.

  • PDF

Corrosion Behavior of Ni-Base Superalloys in a Hot Molten Salt (고온 용융염계에서 Ni-Base 초합금의 부식거동)

  • Cho, Soo-Haeng;Kang, Dae-Seong;Hong, Sun-Seok;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.577-584
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, Inconel MA 754, Nimonic 80A and Nimonic 90 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for 72~216 hrs. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3$, $NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3$ and $Li_2Ni_8O_{10}$ while $Cr_2O_3$, $LiFeO_2$, $(Cr,Ti)_2O_3$ and $Li_2Ni_8O_{10}$ were produced from Nimonic 80A. Also, corrosion products of Nimonic 90 were found to be $Cr_2O_3$, $(Cr,Ti)_2O_3$, $LiAlO_2$ and $CoCr_2O_4$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, Nimonic 80A, Nimonic 90 showed uniform corrosion behavior.

Development of a Heat Regenerator Using High Temperature Phase Change Material : Part I Prediction of Heat Transfer Phenomena in a Single Module of Phase Change Material (초고온 상변화 물질을 이용한 열회수장치 개발:Part I 축열재 모듈의 열전달 현상 해석)

  • 박준규;서경원;김상진
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.258-267
    • /
    • 1993
  • A mathematical model has been developed to describe heat transfer phenomena in a PCM (phase change material) module for development of an energy recovery system. The PCM module, melting point of which is around 1673 K, consists of silicon(96.8%), aluminium(2.7%) and marginal amounts of impurities such as Ca, Fe and Ti. The module is covered by a capsule that consists of SiC(58%) and graphite(42%). Physical properties that are required for model predictions were cited from the references. The apparent capacity method and the postiterative method wert used in the mathematical model to describe the phase changing mechanism. Temperature and velocity of fluid are the major variables in the model calculation. For the gas temperature of 1773 K that simulates real operating conditions, the prediction shows that PCM is rapidly melted to axial direction. However, for the gas temperature of 3000 K that is higher than the real conditions, PCM is melted rapidly to the radial direction. The gas velocity has no influence on the melting phenomena of the PCM except when the gas velocity is relatively low. At the low gas velocity asymmetry of the temperature profiles in PCM is obtained.

  • PDF

Effect of Sc, Sr Elements on Eutectic Mg2Si Modification and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy (주조용 Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe 합금의 공정 Mg2Si 개량과 주조특성에 미치는 Sc, Sr 첨가원소의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.147-154
    • /
    • 2015
  • The effects of Sc and Sr elements on the modification of the eutectic $Mg_2Si$ phase and the castability were investigated in the Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe alloy. Measurements of the cooling curve and microstructure observations were performed to analyze the additional effects of Sc and Sr minor elements during the solidification process. A prominent effect found on the modification of the eutectic $Mg_2Si$ phase with additions of the Sr and Sc elements. Here, a fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident with an addition of Sc element up to 0.2 wt%. The growth temperature of the eutectic $Mg_2Si$ phase decreased and the effect on the modification of the eutectic $Mg_2Si$ phase increased with the addition of Sr element up to 0.02 wt%. The addition of 0.02wt%Sr had the strongest effect on the modification of the eutectic $Mg_2Si$ phase, and the resulting microstructure of the eutectic $Mg_2Si$ phase was found to have a fibrous morphology with a decreased aspect ratio and an increased modification ratio. Fluidity and shrinkage tests were conducted to evaluate the castability of the alloy. The addition of 0.02wt%Sr effectively increased the fluidity of the alloy, while an addition of Sc did not show any effect compared to when nothing was added. The maximum filling length was recorded for 0.01wt%TiB-0.02wt%Sr owing to the effect of the fine ${\alpha}$-Al grains. The macro-shrinkage ratio decreased, while the micro-shrinkage ratio increased with the addition of various eutectic modifiers. The highest ratio of micro-shrinkage was recorded for the 0.02wt%Sr condition. However, the total shrinkage ratio was nearly identical regardless of the amounts added in this study.

A Study on Intermediate Layer for Palladium-Based Alloy Composite Membrane Fabrication (팔라듐 합금 복합막 제조를 위한 Intermediate Layer 연구)

  • Hwang, Yong-Mook;Kim, Kwang-Je;So, Won-Wook;Moon, Sang-Jin;Lee, Kwan-Young
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.458-464
    • /
    • 2006
  • The Pd-Ni-Ag alloy composite membrane using modified porous stainless steel (PSS) as a substrate was prepared by a electroless plating technique. In this work, we have introduced the intermediate layer between Pd-based alloy and a metal substrate. As an intermediate layer, the mixtures of nickel powder and inorganic sol such as $SiO_{2}$ sol, $Al_{2}O_{3}$ sol, and $TiO_{2}$ sol were used. The intermediate layers were coated onto a PSS substrate according to various membrane preparation conditions and then $N_{2}$ fluxes through the membranes with different intermediate layers were measured. The surface morphology of the intermediate layer in the mixture of nickel powder and inorganic sol was analyzed using scanning electron microscope (SEM). Finally, the Pd-Ni-Ag alloy composite membrane using the support coated with the mixture of nickel powder and silica as an intermediate layer was fabricated and then the gas permeances for $H_{2}$ and $N_{2}$ through the Pd-based membrane were investigated. The selectivity of $H_2/N_2$ was infinite and the $H_{2}$ flux was $1.39{\times}10^{-2}mol/m^2{\cdot}s$ at the temperature of $500^{\circ}C$ and trans-membrane pressure difference of 1 bar.

High Temperature Gas Nitriding of Fe-20Mn-12Cr-1Cu Damping Alloy (Fe-20Mn-12Cr-1Cu 제진합금의 고온가스 질화처리)

  • Sung, Jee-Hyun;Kim, Yeong-Hee;Sung, Jang-Hyun;Kang, Chang-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.3
    • /
    • pp.105-112
    • /
    • 2013
  • The microstructural changes of Fe-20Mn-12Cr-1Cu alloy have been studied during high temperature gas nitriding (HTGN) at the range of $1000^{\circ}C{\sim}1150^{\circ}C$ in an atmosphere of nitrogen gas. The mixed microstructure of austenite and ${\varepsilon}$-martensite of as-received alloy was changed to austenite single phase after HTGN treatment at the nitrogen-permeated surface layer, however the interior region that was not affected nitrogen permeation remained the structure of austenite and ${\varepsilon}$-martensite. With raising the HTGN treatment temperature, the concentration and permeation depth of nitrogen, which is known as the austenite stabilizing element, were increased. Accordingly, the depth of austenite single phase region was increased. The outmost surface of HTGN treated alloy at $1000^{\circ}C$ appeared Cr nitride. And this was in good agreement with the thermodynamically calculated phase diagram. The grain growth was delayed after HTGN treatment temperature ranges of $1000^{\circ}C{\sim}1100^{\circ}C$ due to the grain boundary precipitates. For the HTGN treatment temperature of $1150^{\circ}C$, the fine grain region was shown at the near surface due to the grain boundary precipitates, however, owing to the depletion of grain boundary precipitates, coarse grain was appeared at the depth far from the surface. This depletion may come from the strong affinity between nitrogen and substitutional element of Al and Ti leading the diffusion of these elements from interior to surface. Because of the nitrogen dissolution at the nitrogen-permeated surface layer by HTGN treatment, the surface hardness was increased above 150 Hv compared to the interior region that was consisted with the mixed microstructure of austenite and ${\varepsilon}$-martensite.