• Title/Summary/Keyword: Ti-doped ZnO

Search Result 56, Processing Time 0.028 seconds

Fabrication of Ti Doped ZnO Nanostructures by Atomic Layer Deposition and Block Copolymer Templates

  • Kwack, Won-Sub;Zhixin, Wan;Choi, Hyun-Jin;Jang, Seung-Il;Lee, Woo-Jae;Kwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.452-452
    • /
    • 2013
  • ZnO is one of the most attractive transparent conductive oxide (TCO) films because of low toxicity, a wide band gap material and relatively low cost. However, the electrical conductivity of un-doped ZnO is too high to use it as TCO films in practical application. To improve electrical properties of undoped ZnO, transition metal (TM) doped ZnO films such as Al doped ZnO or Ti doped ZnO have been extensively studied. Here, we prepared Ti doped ZnO thin films by atomic layer deposition (ALD) for the application of TCO films. ALD was used to prepare Ti-doped ZnO thin films due to its inherent merits such as large area uniformity, precise composition control in multicomponent thin films, and digital thickness controllability. Also, we demonstrated that ALD method can be utilized for fabricating highly ordered freestanding nanostructures of Ti-doped ZnO thin films by combining with BCP templates, which can potentially used in the photovoltaic applications.

  • PDF

Electrical and Optical Properties of Ti-ZnO Films Grown on Glass Substrate by Atomic Layer Deposition (원자층 증착법을 통하여 유리 기판에 증착한 Ti-ZnO 박막의 전기적 광학적 특성)

  • Lee, U-Jae;Kim, Tae-Hyeon;Gwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.57-57
    • /
    • 2018
  • Zinc-oxide (ZnO), II-VI semiconductor with a wide and direct band gap (Eg: 3.2~3.4 eV), is one of the most potential candidates to substitute for ITO due to its excellent chemical, thermal stability, specific electrical and optoelectronic property. However, the electrical resistivity of un-doped ZnO is not low enough for the practical applications. Therefore, a number of doped ZnO films have been extensively studied for improving the electrical conductivities. In this study, Ti-doped ZnO films were successfully prepared by atomic layer deposition (ALD) techniques. ALD technique was adopted to careful control of Ti doping concentration in ZnO films and to show its feasible application for 3D nanostructured TCO layers. Here, the structural, optical and electrical properties of the Ti-doped ZnO depending on the Ti doping concentration were systematically presented. Also, we presented 3D nanostructured Ti-doped ZnO layer by combining ALD and nanotemplate processes.

  • PDF

Screen Printed ZnBO Doped (Ba,Sr)TiO3 Thick Film Planner Capacitors (스크린 프린팅 기법으로 제작된 ZnBO 첨가 (Ba,Sr)TiO3 Planner Capacitor 특성 분석)

  • Moon, Sang-Ho;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.724-727
    • /
    • 2009
  • We have fabricated (Ba,Sr)TiO3$TiO_3$ thick films doped with various amount of ZnBO dopants (1, 3, and 5 wt%) by screen printing method on the alumina substrates, which were sintered at the temperature below $1200^{\circ}C$. With increasing the amount of ZnBO dopants, the relative dielectric permittivity of ZnBO doped (Ba,Sr)$TiO_3$ was decreased, while loss tangent was increased. 1 wt% ZnBO doped (Ba,Sr)$TiO_3$ thick film has relative dielectric permittivity of 759 at 1 MHz, while 3 and 5 wt% of ZnBO doped (Ba,Sr)$TiO_3$ thick films have 624 and 554, respectively. By introducing ZnBO dopants to the (Ba,Sr)$TiO_3$ thick films, leakage current densities were decreased. The decreased leakage current with increasing ZnBO dopants can be explained by increased density and grain size of thick film on alumina substrate. We believe this decreased leakage current density probably come from the increased grain size and increased density.

Synthesis and High Photocatalytic Activity of Zn-doped TiO2 Nanoparticles by Sol-gel and Ammonia-Evaporation Method

  • Nguyen, Thanh Binh;Hwang, Moon-Jin;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.243-247
    • /
    • 2012
  • Photocatalysis has been applied to decompose the waste and toxic materials produced in daily life and in the global environment. Pure $TiO_2$ (Zn-$TiO_2$-0) and Zn-doped $TiO_2$ (Zn-$TiO_2$-x, x = 3-10 mol %) samples were synthesized using a novel sol-gel and ammonia-evaporation method. The Zn-doped $TiO_2$ samples showed high photocatalytic activity for the degradation of methylene blue (MB). The physicochemical properties of the samples were investigated using XRD, SEM, ICP, DLS and BET methods. In addition, the most important measurement of photocatalytic ability was investigated by a UV-vis spectrophotometer. The effects of the mol % of zinc ion doping in $TiO_2$ on photocatalytic activity were studied. Among the mol % Zn ions investigated, the Zn-$TiO_2$-9 sample showed the highest photoreactivity. This sample removed 91.4% of the MB after 4 h, while the pure $TiO_2$ only removed 46.4% of the MB.

The Effect of Nano-scale Zn-$TiO_2$ and Pure $TiO_2$ Particles were Prepared using a Hydrothermal Method on Zebrafish Embryogenesis (수열합성법으로 제조된 Zn-$TiO_2$ 나노입자와 $TiO_2$ 나노입자가 zebrafish 배발생에 미치는 영향)

  • Yeo, Min-Kyeong;Kim, Hyo-Eun
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.4
    • /
    • pp.333-339
    • /
    • 2009
  • In this study, we investigated the biological toxicity of nano-scale Zn (0.1, 0.5, and 1 mol%)-doped $TiO_2$ and pure $TiO_2$ nanoparticles using zebrafish embryogenesis as our model organism. Zn-doped $TiO_2$ nanoparticles were prepared using a conventional hydrothermal method for the insertion of zinc into the $TiO_2$ framework. The characters of Zn-doped $TiO_2$ (0.1%, 0.5%, 1%Zn) and pure $TiO_2$ were about 7~8 nm. These sizes were smaller than 100~200 nm of $TiO_2$ was prepared using the sol-gel method. Particularly, in this study, we found no significant biological toxicity in the hatching rate and abnormal rate under expose pure $TiO_2$ and Zn-doped $TiO_2$ nanoparticles were prepared using a conventional hydrothermal method of zebrafish. It was different from the biological damage under $TiO_2$ nanoparticles were prepared using sol-gel method. We assessed that the damage was not linked to the particle's nanometer size, but rather due to the prepare method. Moreover, $TiO_2$ nanoparticles were prepared using a hydrothermal method were not shown to cause cytotoxic effects, like apoptosis and necrosis, that are the major markers of toxicity in organisms exposed to nanomaterials. Therefore, there is some relationship with biological toxicity of nanoparticles and the prepare method of nanometer size particles.

Enhancement of Photo-reduction of Water by Exploiting Zn Doped Mesoporous $TiO_2$

  • Ali, Zahid;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.588-588
    • /
    • 2012
  • Zn-doped $TiO_2$ mesoporous microspheres with high photocatalytic activity were synthesized via combined sol-gel and solvothermal methods for photocatalytic water splitting. It is found that the photocatalytic water splitting and photocatalytic degradation activity can be enhanced by doping an appropriate amount of Zn. Our results reveal that Zn doping inhibits the recombination of photo-generated charge carriers of $TiO_2$ and improves the probability of photo-generated charge carrier separation and hence the photocatalytic activity of $TiO_2$.

  • PDF

The effect of Zn2TiO4 on willemite crystalline glaze (Zn2TiO4가 아연결정유약에 미치는 효과)

  • Lee, Chi-Youn;Lee, Hyun-Soo;Shin, Kyung-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.70-76
    • /
    • 2014
  • $Zn_2TiO_4$, using an anatase form of $TiO_2$ on zinc crystalline glaze, was shown as effective nuclear agent. Thus the effects on glaze were studied with synthesized $Zn_2TiO_4$ at low temperature. First, the chromophore elements were employed in synthesized $Zn_2TiO_4$ then add them in the zinc crystalline glaze. Crystal creation and development of color by $Zn_2TiO_4$ addition on the zinc crystalline glaze were more effective. Addition of $Zn_2TiO_4$, which is developed in low range temperature, is effected as zinc crystalline nuclear in the willemite glaze. When 5 wt% of synthesized $Zn_2TiO_4$ was added to the willemite glaze, nuclear creation increases and steadily retains. Therefore addition of respectively doped $Zn_2TiO_4$ with CoO, NiO, and CuO would increase doped effects in the glaze, various color willemite crystal were obtained.

Fabrication of Transition-metal-incorporated TiO2 Nanopowder by Flame Synthesis (화염법에 의한 천이금속 첨가 이산화티타늄 나노분말의 제조)

  • Park Hoon;Jie Hyunseock;Lee Seung-Yong;Ahn Jae-Pyoung;Lee Dok-Yol;Park Jong-Ku
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.399-405
    • /
    • 2005
  • Nanopowders of titanium dioxide $(TiO_2)$ incorporating the transition metal element(s) were synthesized by flame synthesis method. Single element among Fe(III), Cr(III), and Zn(II) was doped into the interior of $TiO_2$ crystal; bimetal doping of Fe and Zn was also made. The characteristics of transition-metal-doped $TiO_2$ nanopowders in the particle feature, crystallography and electronic structures were determined with various analytical tools. The chemical bond of Fe-O-Zn was confirmed to exist in the bimetal-doped $TiO_2$ nanopowders incorporating Fe-Zn. The transition element incorporated in the $TiO_2$ was attributed to affect both Ti 3d orbital and O 2p orbital by NEXAFS measurement. The bimetal-doped $TiO_2$ nanopowder showed light absorption over more wide wavelength range than the single-doped $TiO_2$ nanopowders.

Electrical Properties of TiO$_2$dopen ZnO (TiO$_2$가 첨가된 ZnO의 전기적성질)

  • 최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.22-24
    • /
    • 1995
  • The electrical conductivity of TiO$_2$doped ZnO was investigated by means of complex impedance measurement and voltage-current source and meaurement unit. The e1ectrical conductivity of TiO$_2$added ZnO was increased with increasing the concentration of TiO$_2$. The calculated relative dielectric constant was decreased with increasing the concentration of TiO$_2$. The increase of electrical conductivity seems to be the effect of TiO$_2$donor doping.

  • PDF