• Title/Summary/Keyword: Ti-based alloys

Search Result 151, Processing Time 0.032 seconds

A Study on the Properties of Design for the Biomaterial Ti-Ag-Zr Alloys Using DV-Xα Molecular Orbital Method (DV-Xα 분자궤도법으로 설계한 생체용 Ti-Ag-Zr 합금 특성 평가)

  • Baek, Min-Sook;Yoon, Dong-Joo;Kim, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.175-179
    • /
    • 2014
  • Ti and Ti alloys have been extensively used in the medical and dental fields because of their good corrosion resistance, high strength to density ratio and especially, their low elastic modulus compared to other metallic materials. Recent trends in biomaterials research have focused on development of metallic alloys with elastic modulus similar to natural bone, however, many candidate materials also contain toxic elements that would be biologically harmful. In this study, new Ti based alloys which do not contain the toxic metallic components were developed using a theoretical method (DV-$X{\alpha}$). In addition, alloys were developed with improved mechanical properties and corrosion resistance. Ternary Ti-Ag-Zr alloys consisting of biocompatible alloying elements were produced to investigate the alloying effect on microstructure, corrosion resistance, mechanical properties and biocompatibility. The effects of various contents of Zr on the mechanical properties and biocompatibility were compared. The alloys exhibited higher strength and corrosion resistance than pure Ti, had antibacterial properties, and were not observed to be cytotoxic. Of the designed alloys' mechanical properties and biocompatibility, the Ti-3Ag-0.5Zr alloy had the best results.

Microstructure and Corrosion Resistance of Ti-15Sn-4Nb Alloy with Hf Adding Element (Hf가 첨가된 생체용 Ti-15Sn-4Nb 합금의 미세조직 및 내식성)

  • Lee, Doh-Jae;Lee, Kyung-Ku;Cho, Kyu-Zong;Yoon, Taek-Rim;Park, Hyo-Byung
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.55-64
    • /
    • 2001
  • This study is focusing on the improvement of problems of Ti-6Al-4V alloy. A new Ti based alloy, Ti-15Sn-4Nb, have designed to examine any possibility of improving the mechanical properties and biocompatibility. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at $100^{\circ}C$ for 24h. All specimens were solution treated at $812^{\circ}C$ and aged at $500^{\circ}C$ for 10h. The corrosion resistance of Ti alloys was evaluated by potentiodynamic polarization test and immersion test inl%Lactic acid solutions. Ti-15Sn-4Nb system alloys showed Widmanstatten microstructure after solution treatment which is typical microstructure of ${\alpha}+{\beta}$ type Ti alloys. Analysing the corrosion resistance of Ti alloys, it was concluded that the passive films of Ti-15Sn-4Nb system alloys are more stable than that of Ti-6Al-4V alloys. Also, the corrosion resistance of Ti-15Sn-4Nb system alloys was improved with adding elements, Hf. It was analysed that the passive film of the Ti-15Sn-4Nb alloy which was formed in air atmosphere was consisted of TiO2, SnO and NbO through X-ray photoelectron spectroscopy(XPS) analysis.

  • PDF

Analysis of Wear Resistance and Wear Mechanism Change of Ti-5Mo-xFe (x=2,4 wt%) Alloys Based on Fe Addition (Ti-5Mo-xFe (x=2,4 wt%) 합금의 Fe 첨가에 따른 마모 메커니즘 변화와 내마모 특성 분석)

  • Yeong-Hun Jung;Yong-Jae Lee;Dong-Geun Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.5
    • /
    • pp.247-254
    • /
    • 2024
  • Metastable β titanium alloys have been used in implants due to their high specific strength and excellent corrosion resistance. However, the high cost of β-stabilizing elements limits the application of metastable β titanium alloys. Consequently, research has been conducted on low-cost metastable β titanium alloys using relatively inexpenisve β-stabilizing elements such as Mo and Fe. This study analyzes the wear resistance of Ti-5Mo-xFe (x=2,4 wt%) alloys, designed and manufactured as low-cost metastable β titanium alloys. The wear mechanisms of Ti-5Mo-xFe alloys were identified through ball-on disk testing and observation of the worn surfaces. Additionally, the influence of Fe addition on the microstructure and the resulting changes in wear resistance were examined. The wear resistance of the Ti-5Mo-xFe alloys were evaluated in comparison to the Ti-6Al-4V ELI alloy.

Numerical analysis of a new SMA-based seismic damper system and material characterization of two commercial NiTi-alloys

  • Olsen, J.S.;Van der Eijk, C.;Zhang, Z.L.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.137-152
    • /
    • 2008
  • The work presented in this paper includes material characterisation and an investigation of suitability in seismic dampers for two commercially available NiTi-alloys, along with a numerical analysis of a new damper system employing composite NiTi-wires. Numerical simulations of the new damper system are conducted, using Brinson's one-dimensional constitutive model for shape memory alloys, with emphasis on the system's energy dissipation capabilities. The two alloys tested showed some unwanted residual strain at temperatures higher than $A_f$, possibly due to stress concentrations near inclusions in the material. These findings show that the alloys are not ideal, but may be employed in a seismic damper if precautions are made. The numerical investigations indicate that using composite NiTi-wires in a seismic damper enhances the energy dissipation capabilities for a wider working temperature range.

Si and Mg Coatings on the Hydroxyapatite Film Formed Ti-29Nb-xHf Alloys by Plasma Electrolyte Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.152-152
    • /
    • 2017
  • Titanium and its alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element,such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}$-stabilizer and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Therefore, in this study, Si and Mg coatings on the hydroxyapatite film formed Ti-29Nb-xHf alloys by plasma electrolyte oxidation has been investigated using several experimental techniques. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. The electrolyte was Si and Mg ions containing calcium acetate monohydrate + calcium glycerophosphate at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Effects of phase changes on mechanical properties of Ti-Nb alloys (Ti-Nb계 합금의 상변화가 기계적 성질에 미치는 영향)

  • Park, Hyo-Byeong
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • The use of titanium alloys as biomaterials is increasing due to their superior biocompatibility and enhanced corrosion resistance compared to conventional stainless steels and cobalt-based alloys. Ti-6Al-4V ($\alpha+\beta$type) alloy instead of pure titanium ($\alpha$type) is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength and corrosion resistance. But it has been reported recently that the vanadium element expresses cytotoxicity and the aluminium element is related with dementia of Alzheimer type and neurotoxicity. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study. This paper was described the influence of phase changes of Ti-Nb alloys on mechanical properties. Ti-3wt.%Nb($\alpha$type),Ti-20wt.%Nb($\alpha+\beta$type) and Ti-40wt.%Nb($\beta$type) alloys were melted by vacuum arc furnace. The specimens were homogenized at 1050$^{\circ}C$ for 24hr and were then hot rolled to 50% reduction. Each alloys were solution heat treated at $\beta$ zone and $\alpha+\beta$ zone after homogenization and then were aged. The mechanical properties of Ti alloys were analysed by hardness test, tensile test, elongation test and SEM test. The results can be summarized as follows: 1) The higher hardness value of $\alpha+\beta$type alloy was obtained compared to the, $\alpha,\beta$type alloys. 2) The aged treated showed better hardness compared to the solution heat treated, homogenized. 3) In the case of solution and aging treatment at $\beta$region, the $\alpha+\beta$type alloy showed the most highest tensile strength and $\beta$type alloy showed the best elongation.

  • PDF

Effect of Mn Addition on Sintering Properties of Ti-10wt.%Al-xMn Powder Alloy (Ti-10wt.%Al-xMn 분말합금의 Mn첨가에 따른 소결특성 평가)

  • Shin, Gi-Seung;Hyun, Yong-Taek;Park, Nho-Kwang;Park, Yong-Ho;Lee, Dong-Geun
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.235-241
    • /
    • 2017
  • Titanium alloys have high specific strength, excellent corrosion and wear resistance, as well as high heat-resistant strength compared to conventional steel materials. As intermetallic compounds based on Ti, TiAl alloys are becoming increasingly popular in the aerospace field because these alloys have low density and high creep properties. In spite of those advantages, the low ductility at room temperature and difficult machining performance of TiAl and $Ti_3Al$ materials has limited their potential applications. Titanium powder can be used in such cases for weight and cost reduction. Herein, pre-forms of Ti-Al-xMn powder alloys are fabricated by compression forming. In this process, Ti powder is added to Al and Mn powders and compressed, and the resulting mixture is subjected to various sintering temperature and holding times. The density of the powder-sintered specimens is measured and evaluated by correlation with phase formation, Mn addition, Kirkendall void, etc. Strong Al-Mn reactions can restrain Kirkendall void formation in Ti-Al-xMn powder alloys and result in increased density of the powder alloys. The effect of Al-Mn reactions and microstructural changes as well as Mn addition on the high-temperature compression properties are also analyzed for the Ti-Al-xMn powder alloys.

Blended Elemental P/M Synthesis of Titanium Alloys and Titanium Alloy-based Particulate Composites

  • Hagiwara, Masuo;Emura, Satoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1030-1031
    • /
    • 2006
  • Titanium alloys and Titanium alloy-based particulate composites were synthesized using the blended elemental P/M route. First, processing conditions such as the fabrication of master alloy powder were investigated. Ti-6Al-4V, Ti-5Al-2.5Fe, Ti-6Al-2Sn-4Zr-2Mo, IMI685, IMI829, Timetal 1100 and Timetal 62S, and Ti-6Al-2Sn-4Zr-2Mo/ 10%TiB and Timetal 62S/10%TiB were then synthesized using the optimal processing conditions obtained. The microstructures and mechanical properties such as tensile strength and high cycle fatigue strength were evaluated.

  • PDF

Measurement of Localized Corrosion Resistance in Additively Manufactured Ti-6Al-4V Alloys Using Electrochemical Critical Localized Corrosion Temperature (E-CLCT) versus Electrochemical Critical Localized Corrosion Potential (E-CLCP) (적층가공 (3D 프린팅) Ti-6Al-4V합금의 국부부식 저항성 평가를 위한 임계국부부식온도와 임계국부부식전위 측정방법의 비교)

  • Seo, Dong-Il;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 2021
  • Additively manufactured (AM) Ti-6Al-4V alloys exhibit a dominant acicular martensite phase (α'), which is characterized by an unstable energy state and highly localized corrosion susceptibility. Electrochemical critical localized corrosion temperature (E-CLCT, ISO 22910: 2020) and electrochemical critical localized corrosion potential (E-CLCP, ISO AWI 4631: 2021) were measured to analyze the localized corrosion resistance of the AM Ti-6Al-4V alloy. Although E-CLCP was measured under mild corrosive conditions such as human body, the validity of evaluating localized corrosion resistance of AM titanium alloys was demonstrated by comparison with E-CLCT. However, the mechanisms of resistance to localized corrosion on the as-received and heat-treated AM Ti-6Al-4V alloys under E-CLCT and E-CLCP differ at various temperatures because of differences in properties under localized corrosion and repassivation. The E-CLCT is mainly measured for initiation of localized corrosion on the AM titanium alloys based on temperature, whereas the E-CLCP yields repassivation potential of re-generated passive films of AM titanium alloys after breaking down.

A Study on the Electrode Characteristics of a New High Capacity Non-Stoichiometry Zr-Based Laves Phase Alloys for Anode Materials of Ni/MH Secondary Battery

  • Lee Sang-Min;Yu Ji-Sang;Lee Ho;Lee Jai-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.72-75
    • /
    • 2000
  • For the purpose of developing the non-stoichiometric Zr-based Laves phase alloy with higher capacity and better performance for electrochemical application, extensive work has been carried out in KAIST. After careful alloy design of $ZrMn_2-based$ hydrogen storage alloys through varing their stoichiometry while susbstituting or adding some alloying elements, the $Zr-Ti-(Lh-V-Ni)_{2.2},\;Zr-Ti-(Mn-V-Cr-Ni)_{1.8\pm0.1}$ with high capacity and better performance was developed. Consequently the $Zr-Ti-(Mn-V-Ni)_{2.2}$ alloy has a high discharge capacity of 394mAh/g and shows a high rate capability equaling to that of commercialized $AB_5$ type alloys. On the other hand, in order to develop the hydrogen storage alloy with higher discharge capacity, the hypo-stoichiometric $Zr(Mn-V-Ni)_{2-\alpha}$ alloys substituted by Ti are under developing. As the result of competitive roles of Ti and $stocihiometry({\alpha})$, the discharge capacity of $Zr-Ti-(Mn-V-Cr-Ni)_{l.8\pm0.1}$ alloys is about 400mAh/g(410 mAh/g, which shows the highest level of performance in the Zr-based alloy developed. Our sequential endeavor is improving the shortcoming of Zr-based Laves phase alloy for commercialization, i.e., poor activation property and low rate capability, etc. It is therefore believed that the commercialization of Zr-based Laves phase hydrogen storage alloy for Ni-MH rechargeable battery is in near future.