• 제목/요약/키워드: Ti-based alloys

검색결과 148건 처리시간 0.024초

Ni-Cr-Fe 및 Ni-Fe-Cr-Mo계 합금의 용접부 균열특성에 관한 연구 Part I : 용착금속의 응고균열 (A Study on the Cracking Behavior in the Welds of Ni-Cr-Fe and Ni-Fe-Cr-Mo Alloys Part I : Solidification Cracking in the Fusion Zone)

  • 김희봉;이창희
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.78-89
    • /
    • 1997
  • This study has evaluated the weld metal solidification cracking behavior of several Ni base superalloys (Incoloy 825, Inconel 718 and Inconel 600). Austenitic stainless steels(304, 310S) were also included for comparison. In addition, a possible mechanism of solidification cracking in the fusion zone was suggested based on the extensive microstructural examinations with SEM, EDAX, TEM, SADP and AEM. The solidification cracking resistance of Ni base superalloys was found to be far inferior to that of austenitic stainless steels. The solidification cracking of Incoloy 825 and Inconel 718 was believel to be closely related with the Laves-austenite (Ti rich in 825 and Nb rich in 718) and MC-austenite eutectic phases formed along the grain boundaries during solidification. Cracking in Inconel 600 was always found along the grain boundaries which were enriched with Ti and P. Further, solidifidcation cracking resistance was dependent not only upon the type of love melting phases but also on the amount of the phases along the solidification grain boundaries.

  • PDF

$L1_{2}-Ni_{3}Al$ 금속간화합물의 강도특성에 관한 연구 (A Study on the Strength Characteristics of $L1_{2}-Ni_{3}Al$ Intermetallic Compound)

  • 한창석;천창환;한승오
    • 열처리공학회지
    • /
    • 제22권1호
    • /
    • pp.8-15
    • /
    • 2009
  • Structural studies have been performed on precipitation hardening found in $Ni_{3}Al$ based ordered alloys using transmission electron microscopy (TEM). Tilt experiments by the weak-beam method were made to obtain some information concerning the cross slip mechanism of the superlattice dislocation. The strength of ${\gamma}'-Ni_3$(Al,Ti) increases over the temperature range of experiment by the precipitation of fine $\gamma$ particles. The peak temperature where a maximum strength was obtained shifted to higher temperature. Over the whole temperature range, the interaction between dislocation and $\gamma$ precipitates is attractive. On the temperature range of 773 K to 973 K, the dislocations in ${\gamma}'$ matrix move on (111) primary slip plane. When the applied stress is removed, the dislocations make cross slip into (010) plane, while those in $\gamma$ precipitates remain on the (111) primary slip plane. The increase of high temperature strength in ${\gamma}'-Ni_3$(Al,Ti) containing $\gamma$ precipitates is due to the restraint of cross slip of dislocations from (111) to (010) by the dispersion of disordered $\gamma$ particles.

Ni-MH 2차 전지용 Zr계 수소저장합금전극의 특성에 미치는 치환원소(Co, Cr, Fe)의 영향 (The effect of substitution elements(Co, Cr, Fe) on the properties of Zr-based hydrogen storage alloy electrode for Ni-MH secondary battery)

  • 최승준;정소이;서찬열;최전;박충년
    • 한국수소및신에너지학회논문집
    • /
    • 제10권3호
    • /
    • pp.185-189
    • /
    • 1999
  • Effects of alloy modification with the $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy for an electrode use have been investigated. For the alloy composition, a part of Mn was substituted by Co, Cr and Fe. The experimental results showed that Co accelerated activation of alloy, and Fe and Cr improved the discharge capacity. These results agree with P-C-T curves of each alloy. But substituting Fe for Mn showed the decrease of the discharge capacity when discharged at high rate (60mA, about 1C rate). Considering both the discharge capacity and the high rate discharge property, $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ alloy was found to be the best alloy among the alloys subjected to the test.

  • PDF

질소이온 주입이 생체적합성 티타늄 임플란트의 마모특성에 미치는 영향 (Effect of Nitrogen Ion Implantation on Wear Behavior of Biocompatible Ti Implant)

  • 변응선;김동수;이구현;정용수
    • 연구논문집
    • /
    • 통권30호
    • /
    • pp.137-145
    • /
    • 2000
  • Since the concept of osseointegration was introduced, titanium and titanium-based alloy materials have been increasingly used for bone-anchored metal in oralmaxillofacial and orthopedic reconstruction. Successful osseointegration has been attributed to biocompatibility and surface condition of metal implant among other factors. Although titanium and titanium alloys have an excellent over the metal ion release and biocompatibility, considerable controversy has developed over the metal ion and wear debris in vivo and vitro. In this study, nitrogen ion implantation technique was used to improve the corrosion resistance and wear property of titanium materials, ultimately to enhance the tissue reaction to titanium implants As ion implantation energy was increased, projected range of nitrogen ion the Ti substrate was gradually increased. Under condition of constant ion energy. atomic concentration of nitrogen was also increased with ion doses. The friction in Hank's solution was increased with ion doses. The friction coefficient of ion implanted specimens in HanK's solution was increased from 0.39, 0.47 to 0.52, 0.65 respectively under high energy and ion dose conditions. As increasing ion energies and ion dose, amount of wear was reduced.

  • PDF

핵융합로 구조용 저방사화강의 용접열영향부 후열처리 균열 감수성 (PWHT Cracking Susceptibility in the Weld Heat-Affected Zone of Reduced Activation Ferritic/Martensitic Steels)

  • 이진종;문준오;이창훈;박준영;이태호;홍현욱;조경목
    • Journal of Welding and Joining
    • /
    • 제34권6호
    • /
    • pp.47-54
    • /
    • 2016
  • Post-Weld Heat Treatment (PWHT) cracking susceptibility in the weld heat-affected zone (HAZ) of reduced activation ferritic-martensitic (RAFM) steels was evaluated through stress-rupture tests. 9Cr-1W based alloys including different C, Ta and Ti content were prepared. The coarse grained heat-affected zone (CGHAZ) samples were simulated with welding condition of 30 kJ/cm heat input. CGHAZ samples consisted of martensite matrix. Stress rupture experiments were carried out using a Gleeble simulator at temperatures of $650-750^{\circ}C$ and at stress levels of 125-550 MPa, corresponding to PWHT condition. The results revealed that PWHT cracking resistance was improved by Ti addition, i.e., Ti contributed to the formation of fine and stable MX precipitates and suppression of coarse M23C6 carbides, resulting in improvement of stress rupture ductility. Meanwhile, rupture strength increased with increasing solute C content.

Evaluation of Ultrasonic Vibration Cutting while Machining Inconel 718

  • Nath, Chandra;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.63-68
    • /
    • 2008
  • Hard and brittle materials, such as Ni- and Ti-based alloys, glass, and ceramics, are very useful in aerospace, marine, electronics, and high-temperature applications because of their extremely versatile mechanical and chemical properties. One Ni-based alloy, Inconel 718, is a precipitation-hardenable material designed with exceptionally high yield strength, ultimate tensile strength, elastic modulus, and corrosion resistance with outstanding weldability and excellent creep-rupture properties at moderately high temperatures. However, conventional machining of this alloy presents a challenge to industry. Ultrasonic vibration cutting (UVC) has recently been used to cut this difficult-to-machine material and obtain a high quality surface finish. This paper describes an experimental study of the UVC parameters for Inconel 718, including the cutting force components, tool wear, chip formation, and surface roughness over a range of cutting conditions. A comparison was also made between conventional turning (CT) and UVC using scanning electron microscopy observations of tool wear. The tool wear measured during UVC at low cutting speeds was lower than CT. UVC resulted in better surface finishes compared to CT under the same cutting conditions. Therefore, UVC performed better than CT at low cutting speeds for all measures compared.

Enhanced Si based negative electrodes using RF/DC magnetron sputtering for bulk lithium ion batteries

  • 황창묵;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.277-277
    • /
    • 2010
  • The capacity of the carbonaceous materials reached ca. $350\;mAhg^{-1}$ which is close to theorestical value of the carbon intercalation composition $LiC_6$, resulting in a relatively low volumetric Li capacity. Notwithstanding the capacities of carbon, it will not adjust well to the need so future devices. Silicon shows the highest gravimetric capacities (up to $4000\;mAhg^{-1}$ for $Li_{21}Si_5$). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. We focused on electrode materials in the multiphase form which were composed of two metal compounds to reduce the volume change in material design. A combination of electrochemically amorphous active material in an inert matrix (Si-M) has been investigated for use as negative electrode materials in lithium ion batteries. The matrix composited of Si-M alloys system that; active material (Si)-inactive material (M) with Li; M is a transition metal that does not alloy with Li with Li such as Ti, V or Mo. We fabricated and tested a broad range of Si-M compositions. The electrodes were sputter-deposited on rough Cu foil. Electrochemical, structural, and compositional characterization was performed using various techniques. The structure of Si-M alloys was investigated using X-ray Diffractometer (XRD) and transmission electron microscopy (TEM). Surface morphologies of the electrodes are observed using a field emission scanning electron microscopy (FESEM). The electrochemical properties of the electrodes are studied using the cycling test and electrochemical impedance spectroscopy (EIS). It is found that the capacity is strongly dependent on Si content and cycle retention is also changed according to M contents. It may be beneficial to find materials with high capacity, low irreversible capacity and that do not pulverize, and that combine Si-M to improve capacity retention.

  • PDF

Inconel 718의 국부 부식 저항성에 미치는 용체화 열처리의 영향 (Effect of Solution Annealing Heat Treatment on the Localized Corrosion Resistance of Inconel 718)

  • 이윤화;이준섭;권순일;신정호;이재현
    • Corrosion Science and Technology
    • /
    • 제22권5호
    • /
    • pp.359-367
    • /
    • 2023
  • The localized corrosion resistance of the Ni-based Inconel 718 alloy after solution heat treatment was evaluated using electrochemical techniques in a solution of 25 wt% NaCl and 0.5 wt% acetic acid. Solution heat treatment at 1050 ℃ for 2.5 hours resulted in an increased average grain diameter. Both Ti carbides (10 ㎛ diameter) and Nb-Mo carbides (1 - 9 ㎛ diameter) were distributed throughout the material. Despite heat treatment, the shape and composition of these carbides remained consistent. An increase in solution temperature led to a decrease in pitting potential value. However, the pitting potential value of solution heat-treated Inconel 718 was consistently higher than that of as-received Inconel 718 at all tested temperatures. Localized corrosion initiation occurred at 0.4 VSSE in a temperature environment of 80 ℃ for both as-received and solution heat-treated Inconel 718 alloys. X-ray photoelectron spectroscopic analysis indicated that the composition of the passive film formed on specimen surfaces remained largely unchanged after solution heat treatment, with O1s, Cr2p3/2, Fe2p3/2, and Ni2p3/2 present. The difference in localized corrosion resistance between as-received and solution heat-treated Inconel 718 alloys was attributable to microstructural changes induced by the heat treatment process.

기계적합금화법을 이용한 고온 고강도 Al-Nb-Zr 합금 제조 및 특성 평가 (Elevation of Properties of Al-Nb-Ar alloys Fabricated by Mechanical Alloying Metho)

  • 권대환;안인섭;김상식;이광민;박민우
    • 한국재료학회지
    • /
    • 제10권7호
    • /
    • pp.499-504
    • /
    • 2000
  • 최근에 고온용 항공기 구조 재료로 Ti, Zr, V, Nb 및 Ta 등의 천이금속을 첨가한 Al 합금계 제조와 특성에 관한 연구가 되어져 왔다. 본 연구에서는 Al-Nb합금에 Zr을 첨가하여 상형성거동을 연구하였다. Al-1.3at.%(Nb+Zr) 합금에서 Nb와 Zr의 원자비를 1:3, 1:1 및 3:1로 하여 기계적합금화하였다. 기계적합금화하는 동안 Al-Nb-Zr의 형태변화와 미세구조를 SEM, XRD 및 TEM으로 관찰하였다. X-선 회절 시험에 의하여 $Nb_2Al$$Al_3Zr_4$가 생성됨을 확인하였다. $500^{\circ}C$에서 1시간동안의 진공열처리에 의하여 $Al_3Zr$, $Al_3Zr_4$ 등의 금속간화합물을 형성하였다. 30시간동안 기계적 합금화한 분말을 열처리하여 TEM으로 관찰한 결과 100nm 이하의 금속간화합물 입자들을 관찰하였다.

  • PDF

고강도 Nb기 초내열 합금 설계를 위한 기계학습 기반 데이터 분석 (Machine Learning-based Data Analysis for Designing High-strength Nb-based Superalloys)

  • 마은호;박수원;최현주;황병철;변종민
    • 한국분말재료학회지
    • /
    • 제30권3호
    • /
    • pp.217-222
    • /
    • 2023
  • Machine learning-based data analysis approaches have been employed to overcome the limitations in accurately analyzing data and to predict the results of the design of Nb-based superalloys. In this study, a database containing the composition of the alloying elements and their room-temperature tensile strengths was prepared based on a previous study. After computing the correlation between the tensile strength at room temperature and the composition, a material science analysis was conducted on the elements with high correlation coefficients. These alloying elements were found to have a significant effect on the variation in the tensile strength of Nb-based alloys at room temperature. Through this process, a model was derived to predict the properties using four machine learning algorithms. The Bayesian ridge regression algorithm proved to be the optimal model when Y, Sc, W, Cr, Mo, Sn, and Ti were used as input features. This study demonstrates the successful application of machine learning techniques to effectively analyze data and predict outcomes, thereby providing valuable insights into the design of Nb-based superalloys.