• 제목/요약/키워드: Ti-alloys

검색결과 738건 처리시간 0.032초

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2002년도 제3회 최신 분말제품 응용기술 Workshop
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

$\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) 비정질합금의 열적안정성 (Thermal Stability of $\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) Amorphous Alloys)

  • 국진선;전우용;진영철;김상협
    • 한국재료학회지
    • /
    • 제7권3호
    • /
    • pp.218-223
    • /
    • 1997
  • 과냉각액체구역(${\Delta}T_{x}=T_{x}-T_{g}$)을 갖는 $Fe_{80}P_{10}C_{6}B_{4}$ 조성에 천이금속(Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Co, Ni, Pd, Pt및 Cu)를 첨가하여 이들 원소가 유리화온도($T_{g}$), 결정화온도($T_{x}$) 및 과냉액체구역 (${\Delta}T_{x}$)에 미치는 영향에 \ulcorner여 조사하였다. $Fe_{80}P_{10}C_{6}B_{4}$ 합금의 ${\Delta}T_{x}$ 값은 27K였으나 이 합금에 Hf, Ta 및 Mo을 각각 4at%첨가하면 그 값이 40k 이상으로 증가하였다. 이같은 ${\Delta}T_{x}$ 값의 증가는 유리화온도($T_{g}$의 상승보다 결정화온도($T_{x}$)의 상승폭이 크기 때문이다. $T_{g}$$T_{x}$는 외각전자밀도(e/a)가 약 7.38에서 7.05로 감소할수록 상승하였다. e/a의 감소는 천이금속과 다른 구성원소(반금속)사이의 상호결합상태를 의미한다. 즉 $T_{g}$$T_{x}$의 상승은 강한 상호결합력에 기인하는 것으로 사료된다.

  • PDF

WELD REPAIR OF GAS TURBINE HOT END COMPONENTS

  • Chaturvedi, M.C.;Yu, X.H.;Richards, N.L.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.235-243
    • /
    • 2002
  • Ni-base superalloys are used extensively in industry, both in aeroengines and land based turbines. About 60% by weight of most modern gas turbine engine structural components are made of Ni-base superalloys. To satisfy practical demands, the efficiency of gas turbine engines has been steadily and systematically increased by design modifications to handle higher turbine inlet or firing temperatures. However, the increase in operating temperatures has lead to a decrease in the life of components and increase in costs of replacement. Moreover, around 80% of the large frame size industrial/utility gas turbines operating in the world today were installed in the mid-sixties to early seventies and are now 25 to 30 years old. Consequently, there are greater opportunities now to repair and refurbish the older models. Basically, there are two major factors influencing the weldability of the cast alloys: strain-age cracking and liquation cracking. Susceptibility to strain-age cracking is due to the total Ti plus AI content of the alloy; Liquation cracking is due either to the presence of low melting constituents or constitutional liquation of constituents. Though Rene 41 superalloy has 4.5wt.% total Ti and Al content and falls just below the safe limit proposed by Prager et al., controlled grain size and special heat treatments are needed to obtain crack-free welds. Varying heat treatments and filler materials were used in a laboratory study, then the actual welding of service parts was carried out to verity the possibility of crack-tree weld of components fabricated from Rene 41 superalloy. The microstructural observations indicated that there were two kinds of carbides in the FCC matrix. MC carbides were located along the grain boundaries, while M$_{23}$C$_{6}$ carbide was located both inter and intra granularly. Two kinds of filler materials, Rene 41 and Hastelloy X were used to gas tungsten arc weld a patch into the sheet metal, along with varying pre-weld heat treatments. The microstructure, hardness and tensile tests were determined. The service distressed parts were categorized into three classes: with large cracks, with medium cracks and with small or no visible cracks. No significant difference in microstructure among the specimens was observed. Specimens were cut from the corner and the straight edge of the patch repair, away from the corner. The only cracks present were found to be associated with inadequate surface preparation to remove oxidation. Guidelines for oxide removal and the welding procedures developed in the research enabled crack-free welds to be produced.d.

  • PDF

생체 유리와 소다 유리침투에 따른 알루미나 세라믹의 굴곡 강도 및 PBS에서의 표면 생성물 연구 (Bending strength of alumina coated with bioglass and soda lime glass and the precipitation on the surface of coated alumina in PBS)

  • 유재양
    • 대한치과기공학회지
    • /
    • 제30권2호
    • /
    • pp.39-45
    • /
    • 2008
  • Titanium and its alloys are widely used as dental implants materials because of their excellent mechanical properties. However, the alumina and zirconia ceramics are preferred to use as the substitute of Ti implants because there is a problems in esthetics and biocompatibility in Ti implant. The the glass infiltrated alumina ceramics are studied to increase the toughness and biocompatibility. The 45S5 and soda-lime glass powder was mixed with ethanol at ratio of 1:1 and brushed on the surface of alumina. Then it was heat treated in the electric furnace at $1400^{\circ}C$ from 30 min. to 5 hours. The glass powder was controlled from 200 to $350{\mu}m$ using ball milling. After heat treatment, the glass infiltrated specimen was tested in universal testing machine to measure the bending strength. The surface microstructure of each specimen was observed with SEM. The biocompatibility of 45S5 and soda-lime glass coated alumina was investigated using PBS at $36.5^{\circ}C$ incubator. The specimen was immersed in PBS for 3, 5, 7, 10 days. After that, the surface morphology was investigated with SEM. As the results of experiment, the 45S5 bioglass infiltrated alumina show the increase of bending strength according to the increasing of heat treatment time from 30 min. to 5 hours at $1400^{\circ}C$ Finally the 1370N bending strength of alumina increased to 1958N at 5 hours heat treatment, which shows 1.4 times higher. In contrast to this, the soda lime glass infiltrated alumina ceramics shows the convex curve according to heat treatment time. Thus it shows maximum bending strength of 1820N at 1 hour heat treatment of $1400^{\circ}C$ It gives 1.3 times higher. However, the bending strength of soda lime glass infiltrated alumina is decreasing with increasing heat treatment time after 1 hour. The precipitation on the surface of 45S5 glass infiltrated alumina was revealed as a sodium phosphate ($Na_{6}P_{6}O_{24}6H_{2}O$) and the amount of precipitation is increasing with increasing of immersion time in PBS. In contrast to this, there is no precipitation are observed on the surface of soda lime glass infiltrated alumina. This implies that 45S5 glass infiltrated alumina brings more biocompatible when it is implanted in human body.

  • PDF

Surface Characteristics of Type II Anodized Ti-6Al-4V Alloy for Biomedical Applications

  • 이수원;정태곤;양재웅;정재영;박광민;정용훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.77-77
    • /
    • 2017
  • Titanium and its alloys offer attractive properties in a variety of applications. These are widely used for the field of biomedical implants because of its good biocompatibility and high corrosion resistance. Titanium anodizing is often used in the metal finishing of products, especially those can be used in the medical devices with dense oxide surface. Based on SAE/AMS (Society of Automotive Engineers/Aerospace Material Specification) 2488D, it has the specification for industrial titanium anodizing that have three different types of titanium anodization as following: Type I is used as a coating for elevated temperature forming; Type II is used as an anti-galling coating without additional lubrication or as a pre-treatment for improving adherence of film lubricants; Type III is used as a treatment to produce a spectrum of surface colours on titanium. In this study, we have focused on Type II anodization for the medical (dental and orthopedic) application, the anodized surface was modified with gray color under alkaline electrolyte. The surface characteristics were analyzed with Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM), surface roughness, Vickers hardness, three point bending test, biocompatibility, and corrosion (potentiodynamic) test. The Ti-6Al-4V alloy was used for specimen, the anodizing procedure was conducted in alkaline solution (NaOH based, pH>13). Applied voltage was range between 20 V to 40 V until the ampere to be zero. As results, the surface characteristics of anodic oxide layer were analyzed with SEM, the dissecting layer was fabricated with FIB method prior to analyze surface. The surface roughness was measured by arithmetic mean deviation of the roughness profile (Ra). The Vickers hardness was obtained with Vickers hardness tester, indentation was repeated for 5 times on each sample, and the three point bending property was verified by yield load values. In order to determine the corrosion resistance for the corrosion rate, the potentiodynamic test was performed for each specimen. The biological safety assessment was analyzed by cytotoxic and pyrogen test. Through FIB feature of anodic surfaces, the thickness of oxide layer was 1.1 um. The surface roughness, Vickers hardness, bending yield, and corrosion resistance of the anodized specimen were shown higher value than those of non-treated specimen. Also we could verify that there was no significant issues from cytotoxicity and pyrogen test.

  • PDF

수소저장합금을 이용한 열수송시스템 제어기술 연구 (Study on the control technique for the heat transportation system using metal hydride)

  • 심규성;김종원;김정덕;명광식
    • 한국수소및신에너지학회논문집
    • /
    • 제11권1호
    • /
    • pp.43-49
    • /
    • 2000
  • 현재 증기나 온수에 의한 열수송은 배관을 통하여 열손실 및 마찰손실 등이 발생하므로 수송거리는 3 내지 5km가 한계이다. 그러나 대부분의 공단이 도시지역에서 10km 이상 떨어져 있으므로 이들 지역에서 발생되는 폐열을 적절히 활용하기 위해서는 새로운 열수송 시스템이 개발되어야 한다. 수소저장합금은 수소를 흡수 또는 방출하면서 발열반응과 흡열반응을 일으키는 특성을 가지고 있으므로 산업공단지역의 폐열로부터 수소저장합금의 수소를 방출시키고, 이 수소를 인근 도시지역에 파이프라인으로 수송한 후 필요시 또 다른 수소저장합금과 반응시켜 열을 얻을 수 있다. 이 시스템에서는 난방의 목적 외에도 수소의 흡수 방출온도가 낮은 합금을 이용하여 냉열을 얻을 수도 있다. 따라서 수소저장합금은 폐열의 저장이나 열수송의 수단으로 활용할 수 있다. $MmNi_{4.5}Al_{0.5}Zr_{0.003}$, $LaNi_5$, $Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$, $MmNi_{4.7}Al_{0.1}Fe_{0.1}V_{0.1}$ 합금들이 열수송에 적합한 합금으로 선정되어 그 특성을 검토하였으며, 열수송시스템의 설계 및 제어기술에 대하여 검토하였다.

  • PDF

Fitting accuracy of ceramic veneered Co-Cr crowns produced by different manufacturing processes

  • von Maltzahn, Nadine Freifrau;Bernhard, Florian;Kohorst, Philipp
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권2호
    • /
    • pp.100-106
    • /
    • 2020
  • PURPOSE. The purpose of this in vitro study was to evaluate the fitting accuracy of single crowns made from a novel presintered Co-Cr alloy prepared with a computer-aided design and computer-aided manufacturing (CAD/CAM) technique, as compared with crowns manufactured by other digital and the conventional casting technique. Additionally, the influence of oxide layer on the fitting accuracy of specimens was tested. MATERIALS AND METHODS. A total of 40 test specimens made from Co-Cr alloy were investigated according to the fitting accuracy using a replica technique. Four different methods processing different materials were used for the manufacture of the crown copings (milling of presintered (Ceramill Sintron-group_cer_sin) or rigid alloy (Tizian NEM-group_ti_nem), selective laser melting (Ceramill NPL-group_cer_npl), and casting (Girobond NB-group_gir_nb)). The specimens were adapted to a resin model and the outer surfaces were airborne-particle abraded with aluminum oxide. After the veneering process, the fitting accuracy (absolute marginal discrepancy and internal gap) was evaluated by the replica technique in 2 steps, before removing the oxide layer from the intaglio surface of the crowns, and after removing the layer with aluminum oxide airborne-particle abrasion. Statistical analysis was performed by multifactorial analysis of variance (ANOVA) (α=.05). RESULTS. Mean absolute marginal discrepancy ranged between 20 ㎛ (group_cer_npl for specimens of Ceramill NPL) and 43 ㎛ (group_cer_sin for crowns of Ceramill Sintron) with the oxide layer and between 19 ㎛ and 28 ㎛ without the oxide layer. The internal gap varied between 33 ㎛ (group_ti_nem for test samples of Tizian NEM) and 75 ㎛ (group_gir_nb for the base material Girobond NB) with the oxide layer and between 30 ㎛ and 76 ㎛ without the oxide layer. The absolute marginal discrepancy and the internal gap were significantly influenced by the fabrication method used (P<.05). CONCLUSION. Different manufacturing techniques had a significant influence on the fitting accuracy of single crowns made from Co-Cr alloys. However, all tested crowns showed a clinically acceptable absolute marginal discrepancy and internal gap with and without oxide layer and could be recommended under clinical considerations. Especially, the new system Ceramill Sintron showed acceptable values of fitting accuracy so it can be suggested in routine clinical work.

Shallow S/D Junction에 적용 가능한 NiSi를 형성하기 위한 Ni-Pd 합금의 특성 연구 (The Study of Ni-Pd Alloy Characteristics to Form a NiSi for Shallow S/D Junction)

  • 이원재;오순영;아그츠바야르투야;윤장근;김용진;장잉잉;종준;김도우;차한섭;허상범;왕진석;이희덕
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.603-606
    • /
    • 2005
  • In this paper, the formation and thermal stability of Ni-silicide using Ni-Pd alloys is studied for ultra shallow S/D junction of nano-scale CMOSFETs. There are no different effects when Ni-Pd is used in single structure and TiN capping structure. But, in case of Cobalt interlayer structure, it was found that Pure Ni had lower sheet resistance than Ni-Pd, because of a thick silicide. Also, Ni-Pd has merits that surface of silicide and interface between silicide and silicon have a good morphology characteristics. As a result, Ni-Pd is an optimal candidate for shallow S/D junction when cobalt is used for thermal stability.

  • PDF

열처리에 의한 도재용 Ni-Cr합금 표면의 변화에 관한 연구 (METAL SURFACE CHANGES BY HEAT TREATMENT OF Ni-Cr ALLOYS)

  • 김영한;이선형;양재호;정헌영
    • 대한치과보철학회지
    • /
    • 제27권2호
    • /
    • pp.219-248
    • /
    • 1989
  • The purposes of this study were to analyze the microstructural and compositional changes of metal surfaces following different conditions of preoxidizing heat treatment, to investigate the composition of metal oxides, and to evaluate the effect of preoxidation and removal of surface oxides on microstructure and diffusion profiles. The techniques of EDAX (energy-dispersive analysis of x-ray), ESCA (electron spectroscopy for chemical analysis), and EPMA (electron probe micro analysis) were used, along with SEM (scanning electron microscopy). The obtained results were as follows : 1. A surface of the specimen became rough and the amount of the metal oxides increased with increasing the heat treatment time and temperature and the partial pressure of oxygen. 2. At an air pressure of 28' vacuum, the higher the temperature and the longer the time of preoxidation, the higher Ni concentration was detected. 3. Cr concentration in the specimen heat treated with air was higher than that of with vacuum. 4. The oxides in the specimens were mainly composed of Ni and Cr oxides. On the globular growth particles, significant rises in Al concentration of Rexillium III and Ti concentration of Verabond were noted. 5. Atomic diffusion occurred at the ceramic-metal interface, furthermore the amount of the flux was increased with preoxidation heat treatment.

  • PDF

Etching characteristics of Al-Nd alloy thin films using magnetized inductively coupled plasma

  • Lee, Y.J.;Han, H.R.;Yeom, G.Y.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 1999년도 추계학술발표회 초록집
    • /
    • pp.56-56
    • /
    • 1999
  • For advanced TFT-LCD manufacturing processes, dry etching of thin-film layers(a-Si, $SiN_x$, SID & gate electrodes, ITO etc.) is increasingly preferred instead of conventional wet etching processes. To dry etch Al gate electrode which is advantageous for reducing propagation delay time of scan signals, high etch rate, slope angle control, and etch uniformity are required. For the Al gate electrode, some metals such as Ti and Nd are added in Al to prevent hillocks during post-annealing processes in addition to gaining low-resistivity($<10u{\Omega}{\cdot}cm$), high performance to heat tolerance and corrosion tolerance of Al thin films. In the case of AI-Nd alloy films, however, low etch rate and poor selectivity over photoresist are remained as a problem. In this study, to enhance the etch rates together with etch uniformity of AI-Nd alloys, magnetized inductively coupled plasma(MICP) have been used instead of conventional ICP and the effects of various magnets and processes conditions have been studied. MICP was consisted of fourteen pairs of permanent magnets arranged along the inside of chamber wall and also a Helmholtz type axial electromagnets was located outside the chamber. Gas combinations of $Cl_2,{\;}BCl_3$, and HBr were used with pressures between 5mTorr and 30mTorr, rf-bias voltages from -50Vto -200V, and inductive powers from 400W to 800W. In the case of $Cl_2/BCl_3$ plasma chemistry, the etch rate of AI-Nd films and etch selectivity over photoresist increased with $BCl_3$ rich etch chemistries for both with and without the magnets. The highest etch rate of $1,000{\AA}/min$, however, could be obtained with the magnets(both the multi-dipole magnets and the electromagnets). Under an optimized electromagnetic strength, etch uniformity of less than 5% also could be obtained under the above conditions.

  • PDF