• Title/Summary/Keyword: Ti-alloys

Search Result 738, Processing Time 0.027 seconds

Influence of Zr Addition on TiB2 Modification and Grain Size in Aluminium Alloys (알루미늄 합금에서 Zr첨가가 TiB2의 변형과 결정립크기에 미치는 영향)

  • Kang, Won-Duck;Park, Hyun Gyoon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.619-627
    • /
    • 2011
  • The poisoning effect of Zr in aluminum alloys was investigated by analyzing the filtered cakes of aluminum alloy melt taken with the $Prefil^{(R)}$ footprinter through a variety of analytic instruments, SEM/EDX, Auger, and TEM. Experimental results indicated that the morphology and chemical composition of the aluminum alloys were not modified with the addition of Zr, which is to previous belief that Zr poisoning is caused by modification of $(Ti_{1-x}Zr_x)Al_3$. On the other hand, $TiAl_3$ surroundig $TiB_2$ particles was modified and its lattice parameter was more mismatched by increasing Zr content, leading to less nucleation rate. This is also supported by the observation that the poisoning effect is reduced when Ti is added, resulting in a lower content ratio of Zr to Ti. These results suggest that extra Ti should be added to eliminate the poisoning effect of Zr in aluminum alloys containing Zr.

Measurement of Localized Corrosion Resistance in Additively Manufactured Ti-6Al-4V Alloys Using Electrochemical Critical Localized Corrosion Temperature (E-CLCT) versus Electrochemical Critical Localized Corrosion Potential (E-CLCP) (적층가공 (3D 프린팅) Ti-6Al-4V합금의 국부부식 저항성 평가를 위한 임계국부부식온도와 임계국부부식전위 측정방법의 비교)

  • Seo, Dong-Il;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 2021
  • Additively manufactured (AM) Ti-6Al-4V alloys exhibit a dominant acicular martensite phase (α'), which is characterized by an unstable energy state and highly localized corrosion susceptibility. Electrochemical critical localized corrosion temperature (E-CLCT, ISO 22910: 2020) and electrochemical critical localized corrosion potential (E-CLCP, ISO AWI 4631: 2021) were measured to analyze the localized corrosion resistance of the AM Ti-6Al-4V alloy. Although E-CLCP was measured under mild corrosive conditions such as human body, the validity of evaluating localized corrosion resistance of AM titanium alloys was demonstrated by comparison with E-CLCT. However, the mechanisms of resistance to localized corrosion on the as-received and heat-treated AM Ti-6Al-4V alloys under E-CLCT and E-CLCP differ at various temperatures because of differences in properties under localized corrosion and repassivation. The E-CLCT is mainly measured for initiation of localized corrosion on the AM titanium alloys based on temperature, whereas the E-CLCP yields repassivation potential of re-generated passive films of AM titanium alloys after breaking down.

Electrochemical Properties of Ti-30Ta-(3~15)Nb Alloys Coated by HA/Ti Compound Layer (HA/Ti 복합층 코팅한 Ti-30Ta-(3~15)Nb 합금의 전기화학적 특성)

  • Jeong, Yong-Hoon;Choe, Han-Cheol;Ko, Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • Electrochemical properties of Ti-30Ta-$(3{\sim}15)$Nb alloys coated by HA/Ti compound layer have been studied by various electrochemical method. Ti-30Ta binary alloys contained 3, 7, 10, and 15 wt% Nb contents were manufactured by the vacuum furnace system. The specimens were homogenized for 24 hrs at $1000^{\circ}C$. The samples were cut and polished for corrosion test and coating. It was coated with HA/Ti compound layer by magnetron sputter. The HA/Ti non-coated and coated morphology of Ti alloy were analyzed by x-ray diffractometer(XRD) and filed emission scanning electron microscope(FE-SEM). The corrosion behaviors were investigated using potentiodynamic method in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The homoginazed Ti-30Ta-$(3{\sim}15wt%$)Nb alloys showed the ${\alpha}+{\beta}$ phase, and ${\beta}$ phase peak was predominantly appeared with increasing Nb content. The microstructure of Ti alloy was transformed from needle-like structure to equiaxed structure as Nb content increased. HA/Ti composite surface showed uniform coating layer with 750 nm thickness. The corrosion resistance of HA/Ti composite coated Ti-alloys were higher than those of the non-coated samples in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. Especially, corrosion resistance of Ti-Ta-Nb system increased as Nb content increased.

Electrochemical Characteristics of Nanotubular Ti-25Nb-xZr Ternary Alloys for Dental Implant Materials

  • Byeon, In-Seop;Park, Seon-Young;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.10 no.1
    • /
    • pp.10-21
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the electrochemical characteristics of nanotubular Ti-25Nb-xZr ternary alloys for dental implant materials. Materials and Methods: Ti-25Nb-xZr alloys with different Zr contents (0, 3, 7, and 15 wt.%) were manufactured using commercially pure titanium (CP-Ti), niobium (Nb), and zirconium (Zr) (99.95 wt.% purity). The alloys were prepared by arc melting in argon (Ar) atmosphere. The Ti-25Nb-xZr alloys were homogenized in Ar atmosphere at $1,000^{\circ}C$ for 12 hours followed by quenching into ice water. The microstructure of the Ti-25Nb-xZr alloys was examined by a field emission scanning electron microscope. The phases in the alloys were identified by an X-ray diffractometer. The chemical composition of the nanotube-formed surfaces was determined by energy-dispersive X-ray spectroscopy. Self-organized $TiO_2$ was prepared by electrochemical oxidation of the samples in a $1.0M\;H_3PO_4+0.8wt.%$ NaF electrolyte. The anodization potential was 30 V and time was 1 hour by DC supplier. Surface wettability was evaluated for both the metallographically polished and nanotube-formed surfaces using a contact-angle goniometer. The corrosion properties of the specimens were investigated using a 0.9 wt.% aqueous solution of NaCl at $36^{\circ}C{\pm}5^{\circ}C$ using a potentiodynamic polarization test. Result: Needle-like structure of Ti-25Nb-xZr alloys was transform to equiaxed structure as Zr content increased. Nanotube formed on Ti-25Nb-xZr alloys show two sizes of nanotube structure. The diameters of the large tubes decreased and small tubes increased as Zr content increased. The lower contact angles for nanotube formed Ti-25NbxZr alloys surfaces showed compare to non-nanotube formed surface. The corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface showed longer the passive regions compared to non-treatment surface. Conclusion: It is confirmed that corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface has longer passive region compared to without treatment surface.

A STUDY OF ION BEAM ASSISTED DEPOSITION(IBAD) OF TiN ON Ni-Cr Be ALLOY FOR SURFACE CHARACTERISTIC (이온빔 보조 증착법에 의한 TiN 박막도포가 니켈-크롬-베릴륨 합금의 표면 성상에 미치는 영향에 관한 연구)

  • Choi, Soo-Young;Lee, Sun-Hyung;Chang, Ik-Tae;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.2
    • /
    • pp.212-234
    • /
    • 1999
  • Dental restorative materials must have the physical properties to withstand wear and corrosion. Base metal alloys possess better mechanical properties and lower price than the gold alloys. For these reasons such alloys have largely replaced the precious metal alloys. One aspect to con-sider is the release of metal substances to oral environment. The release of elements from dental alloys is a continuing concern because the elements may have the potentially harmful biological effects on local tissues. The purpose of this study was to minimize metal release on the nonprecious metal surfaces by ion beam assisted deposition(IBAD) of titanium nitride (TiN) Ni-Cr-Be alloys with and without TiN coatings were secured in an wear test machine opposing ruby ball to determine their relative resistance to wear with loom, 200m, 300m and 400m sliding distance. And the corrosion behavior of the Ni-Cr-Be alloys with and without TiN coatings and 3 dental noble alloys have been studied. Potentiodynamic curves were used to analyse the corrosion characteristics of the alloys. The measurement of the released Ni and Cr ions was conducted by analysis of the electrolyte solution with atomic absorption spectroscopy. The results were as follows : 1. The critical sliding distance that wore down TiN coatings of $2.5{\mu}m$ thickness in this study condition was 300m. 2. Ion beam assisted deposition of TiN showed a good surface modification with respect to the properties of wear and corrosion resistance. 3. X-ray diffraction showed that the strongest peak of TiN is TiN(111) in the coatings. 4. The release of Ni and Cr ions from alloys measured by means of atomic absorption spectroscopy was reduced by ion beam assisted deposition of TiN.

  • PDF

Effects of Adding Element Ta, Hf and Heat Treatment on Mechanical Properties of Ti-40Nb Alloys (Ti-40Nb계 합금에 열처리와 첨가원소 Ta, Hf이 기계적 성질에 미치는 영향)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.19-25
    • /
    • 2005
  • Ti6Al4V alloy have been mainly used as implant materials. Ti-6Al-4V alloy instead of pure Ti is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength. But it has been reported recently that vanadium component expresses cytotoxicity and carcinogenicity and aluminium component is related with dementia of Alzheimer type. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study, in addition Ta and Hf were added to Ti-40wt.%Nb alloy to improve its mechanical properties. This paper was described the influence of heat treatment of Ti-40Nb alloys with 2wt%Ta, 2wt%Hf on the mechanical properties. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at 1050$^{\circ}C$ for 24 hr. and then were aged after solution heat treat at $\alpha+\beta$ and $\beta$ regions. The mechanical properties of Ti alloys were analysed by hardness test, tensile test, elongation test and SEM test. The results can be summarized as follows: 1. The mechanical properties Ti-40wt.%Nb were improved when 2wt.% Ta and 2wt.%Hf were added. 2. The higher tensile strength value and elongation at solution heat treat was higher than solution heat treat and then were aged.

  • PDF

A Study of the Microstructure Properties and Mechanical/electrochemical Behavior of Ti Alloy for Fastening (체결용 Ti 합금의 미세조직 특성 및 기계적/전기화학적 거동 분석 연구)

  • Lee, H.J.;Anaman, Sam Yaw;Choi, J.M.;Lee, K.H.;Park, L.J.;Cho, H.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.151-159
    • /
    • 2022
  • Ti alloys are used in a wide range of applications, especially for aviation and medical purposes, because of their high specific strength and excellent corrosion properties. When subjected to various manufacturing processes, one of the most popular Ti alloys, Ti-6Al-4V, exhibits a variety of microstructural and mechanical properties that makes it an attractive lightweight metal. The purpose of this study was to analyze the microstructure and mechanical properties of Ti alloy wires. Subsequently, the microstructure and electrochemical behavior of Ti alloy bolts produced from these wires were analyzed. The Ti alloy wires are manufactured with different diameters (6.22, 7.81 mm alloys), and their microstructures are measured using electron backscatter diffraction. Recrystallization was observed to occur significantly in the 7.81 alloy than in the 6.81 alloy, and the strain distribution of 7.81 alloy is seen to be likely more uniform than 6.22 alloy. Ti alloy bolt was then forged under moderate temperature by using the 7.81 alloy. Results of the electrochemical analysis indicate that the Ti alloy bolt has excellent corrosion resistance.

Dynamic Oxidation Behaviors of Aluminide Coated Titanium Alloys (알루미나이드 코팅된 티타늄 합금의 동적산화거동)

  • Son, Youngil;Park, Jinsoo;Park, Joonsik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.84-90
    • /
    • 2015
  • Titanium alloys has been received an attention due to their excellent specific strength and many other superior properties in the application of components of flying subjects. In this study, Ti-6Al-4V (Ti64 alloy) has been selected in order to evaluate oxidation and degradation behaviors under the exposure of high temperature flame. The alloy has been coated with Al diffusion coating routes. The coated alloys showed an improved oxidation and degradation behaviors. The oxidation and degradation mechanism for the coated and uncoated alloys has been discussed in terms of microstructural observations.

Effects of Hafnium Addition on the Pitting Corrosion Behavior of Ti Alloys in Electrolyte Containing Chloride Ion (염소이온 함유된 용액에서 Ti합금의 부식특성에 미치는 Hafnium함량의 영향)

  • Kim, Sung-Hwan;Choe, Han-Cheol
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.191-195
    • /
    • 2012
  • The aim of this study was to investigate effects of hafnium content on the corrosion behavior of Ti alloys in electrolyte containing chloride ion. For this study, Ti-Hf binary alloys contained 10 wt%, 20 wt% and 30 wt% Hf were manufactured in a vacuum arc-melting furnace and subjected to heat treatment for 12h at $1000^{\circ}C$ in an argon atmosphere. The pitting corrosion behavior of the specimens was examined through potentiodynamic and potentiostatic tests in 0.9 wt% NaCl electrolyte at $36.5{\pm}1^{\circ}C$. The corrosion morphology of Ti-xHf alloys was investigated using optical microscopy (OM) and X-ray diffractometer (XRD). From the optical microstructures and XRD results, needle-like martensite ($\alpha$') phases of the Ti-xHf alloys increased with an increase of Hf addition. Corrosion current density $(I_{corr})$ and current density $(I_{300mV})$ in passive region decreased, whereas, corrosion potential increased with Hf content. At the constant potential ($300mV_{SCE}$), current density decreased as time increased.

Effect of Iron Content on Microstructure and Mechanical Properties of Ti-Mo-Fe P/M Alloys (Fe 함량에 따른 Ti-Mo-Fe 분말합금의 미세조직 및 기계적 특성 변화)

  • Hwang, HyoWoon;Lee, YongJae;Park, JiHwan;Lee, Dong-Geun
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.325-331
    • /
    • 2022
  • Beta-titanium alloys are used in many industries due to their increased elongation resulting from their BCC structure and low modulus of elasticity. However, there are many limitations to their use due to the high cost of beta-stabilizer elements. In this study, biocompatible Ti-Mo-Fe beta titanium alloys are designed by replacing costly beta-stabilizer elements (e.g., Nb, Zr, or Ta) with inexpensive Mo and Fe elements. Additionally, Ti-Mo-Fe alloys designed with different Fe contents are fabricated using powder metallurgy. Fe is a strong, biocompatible beta-stabilizer element and a low-cost alloying element. The mechanical properties of the Ti-Mo-Fe metastable beta titanium alloys are analyzed in relation to the microstructural changes. When the Fe content increases, the tensile strength and elongation decrease due to brittle fracture despite a decreasing pore fraction. It is confirmed that the hardness and tensile strength of Ti-5Mo-2Fe P/M improve to more than 360 Hv and 900 MPa, respectively.