• Title/Summary/Keyword: Ti-alloys

Search Result 751, Processing Time 0.024 seconds

2nd Nanotube Formed Surface Observation of the Ti-25Ta-xZr Alloys Using ATO Technique

  • Kim, Hyun-Ju;Lee, Ho-Jong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.79-80
    • /
    • 2013
  • The purpose of this study was to investigate $2^{nd} $nanotube formed surface observation of the Ti-25Ta-xZr alloys using ATO(anodic titanium oxide) technique. Ti-25Ta-xZr alloy was anodized in 1M $H_3PO_4$ electrolytes containing 0.8 Wt. % NaF at room temperature. After formation of nanotube was achieved out, nanotube was eliminated, and then anodization was carried out repeatedly. The microstructures, phase transformation, and morphology of nanotubular Ti-25Ta-xZr alloys and process of nanotube growth by using ATO method was examined by optical microscopy (OM), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The ${\alpha}$ phase and ${\beta}$ phases were affected to form the second nanotube morphology of Ti-25Ta-xZr alloys.

  • PDF

Effects of Holding Temperatures on Microstructure and Mechanical Properties of CP Titanium and Ti-6Al-4V Alloy and Its low Temperature Brazing Characteristics (열노출 온도에 따른 CP 티타늄, Ti-6Al-4V 합금의 미세조직/기계적성질 변화 및 저온브레이징 특성)

  • Sun, J.H.;Shin, S.Y.;Hong, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.3-9
    • /
    • 2010
  • Titanium and its alloys were brazed in the range of $850-950^{\circ}C$ within 10 min. of brazing time using expensive infra red or other heating methods. However, brazing time needs to be extended to get temperature-uniformity for mass production by using continuous belt type furnace or high vacuum furnace with low heating rate. This study examined effects of holding temperature for 60 min, on microstructure and mechanical properties of titanium alloys. Mechanical properties of titanium alloys were drastically deteriorated with increasing holding temperature followed by grain growth. Maximum holding temperatures for CP (commercial pure) titanium and Ti-6Al-4V were confirmed as $800^{\circ}C$ and $850^{\circ}C$, respectively. Both titanium alloys were successfully brazed at $800^{\circ}C$ for 60 min. with the level of base metal strengths by using Zr based filler metal, $Zr_{54}Ti_{22}Ni_{16}Cu_8$.

Morphology Change of Nanotube and Micropore on the Ti-25Nb-xHf Alloys with Hf Contents after Anodization

  • Kim, Sung-Hwan;Ko, Yeong-Mo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.333-333
    • /
    • 2012
  • In this study, we investigated morphology of nanotube and micropore on the Ti-25Nb-xHf alloys with Hf contents after anodization. Ti-25Nb-xHf ternary alloys contained from (0~15) wt.% Hf contents were manufactured by vacuum arc-melting furnace. The obtained ingots were homogenized in an argon atmosphere at $1000^{\circ}C$ for 12h and then water quenching. The specimens were cut from ingots to 3mm thickness and first ground and polished using SiC paper (grades from 100 to 2000). 2steps anodization treatments on Ti-25Nb-xHf alloys were carried out at room temperature for experiments. Micro-pore formation was performed in Ca+P mixed solution at 265V for 3min. After that, nanotube formation was in 1M $H_3PO_4$ electrolytes containing 0.8wt.% NaF solutionat 10V for 120min. Morphologies of micropore and nanotube depended on the Hf content in Ti-25Nb-xZr ternary system.

  • PDF

Joint Properties of Stainless Steel and Titanium Alloys Additive Manufactured on Medium Entropy Alloys (중엔트로피 합금 기지 위에 적층조형된 스테인리스강과 타이타늄 합금의 접합특성 분석)

  • Park, Chan Woong;Adomako, Nana Kwabena;Lee, Min Gyu;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.319-326
    • /
    • 2019
  • Additive manufacturing (AM) is a highly innovative method for joining dissimilar materials for industrial applications. In the present work, AM of STS630 and Ti-6Al-4V powder alloys on medium entropy alloys (MEAs) NiCrCo and NiCrCoMn is studied. The STS630 and Ti64 powders are deposited on the MEAs. Joint delamination and cracks are observed after the deposition of Ti64 on the MEAs, whereas the deposition of STS630 on the MEAs is successful, without any cracks and joint delamination. The microstructure around the fusion zone interface is characterized by scanning electron microscopy and X-ray diffraction. Intermetallic compounds are formed at the interfacial regions of MEA-Ti64 samples. In addition, Vicker's hardness value increased dramatically at the joint interface between MEAs and Ti-6Al-4V compared to that between MEAs and STS630. This result is attributed to the brittle nature of the joint, which can lead to a decrease in the joint strength.

Analysis of Microstructure Evolution using Different Powder Metallurgy Process in Ti-X Alloy System (Ti-X계 합금의 분말야금 공정 차이에 따른 미세조직변화 분석)

  • Kwon, Hyeok-Gon;Kim, Doo-Hyeon;Gang, Min;Park, Ji-Hwan;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2021
  • In this study, Ti-X (X=Mn, Fe, Mo) powder alloys were designed and manufactured by both powder metallurgy (PM) and metal powder injection molding (MIM) process to improve strength and formability compared to CP-Ti powder materials. It was found that the lamellar microstructure consisted of α and β phases was formed in PM-processed alloys. However, MIM-processed alloys showed not the lamellar microstucture but the equiaxed α + β microstructure. It was also revealed that the contents of X component and feedstock were not affected to microstructure evolution. The reason why different microstructure was appeared between PM-processed and MIM-processed alloys is not clear yet, but supposed to be the effect of intersticial elements such as C, H and N derived from feedstock during debinding process of MIM.

Improving Mechanical Properties of Wire Arc Additively Manufactured Ti-6Al-4V Alloy by Ultrasonic Needle Peening Treatment

  • Yi, Hui-Jun;Kim, Jin-Woo;Kim, Young-Lak;Shin, Sangyong
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.245-254
    • /
    • 2021
  • Wire arc additive manufacturing (WAAM) is being considered as a technology to replace the conventional manufacturing process of titanium alloys. However, coarse β grains, which can extend through several deposited materials, result in strong textures and anisotropy. As a solution, we study the plastic deformation effects of ultrasonic needle peening (UNP) on the microstructure. UNP treated materials deform plastically and the dislocation density increases. Fine α+α' grains with low aspect ratio are observed in the UNP treated specimens. UNP treated WAAM Ti-6Al-4V alloys have higher strength and lower elongation than those characteristics of WAAM Ti-6Al-4V alloys. Due to UNP treatment, the z-axis directional specimens exhibit a greater effect of reducing elongation than do the x-axis directional specimens. The UNP treatment produces fine grains in proportion to the number of times UNP is performed, thereby increasing strength. UNP processes produce a large number of dislocations in the WAAM Ti-6Al-4V alloys, with the most dislocations being formed at the surface.

EFFECTS OF SURFACE ROUGHNESS AND MULTILAYER COATING ON THE CORROSION RESISTANCE OF Ti-6Al-4V ALLOY

  • Ko, Yeong-Mu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.134-135
    • /
    • 2003
  • The dental implant materials required good mechanical properties, such as fatigue strength, combined with a high resistance to corrosion. For increasing fatigue resistance and delaying onset of stress corrosion cracking, shot peening has been used for > 50 years to extend service life of metal components. However, there is no information on the electrochemical behavior of shot peened and hydroxyapatite(HA) coated Ti-6Al-4V alloys. To increase fatigue strength, good corrosion resistance, and biocompatibility, the electrochemical characteristics of Ti/TiN/HA coated and shot peened Ti-6Al-4V alloys by electron beam physical vapor deposition(EB-PVD) have been researched by various electrochemical method in 0.9%NaCl. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. The produced materials were quenched at 1000$^{\circ}C$ under high purity dried Ar atmosphere and were hold at 500$^{\circ}C$ for 2 hrs to achieve the fatigue strength(1140㎫) of materials. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. Shot peening(SP) and sand blasting treatment was carried out for 1, 5, and 10min. On the surface of Ti-6Al-4V alloys using the steel balls of 0.5mm and alumina sand of 40$\mu\textrm{m}$ size. Ti/TiN/HA multilayer coatings were carried out by using electron-beam deposition method(EB-PVD) as shown Fig. 1. Bulk Ti, powder TiN and hydroxyapatite were used as the source of the deposition materials. Electrons were accelerated by high voltage of 4.2kV with 80 - 120mA on the deposition materials at 350$^{\circ}C$ in 2.0 X 10-6 torr vacuum. Ti/TiN/HA multilayer coated surfaces and layers were investigated by SEM and XRD. A saturated calomel electrode as a reference electrode, and high density carbon electrode as a counter electrode, were set according to ASTM GS-87. The potentials were controlled at a scan rate of 100 mV/min. by a potentiostat (EG&G Co.273A) connected to a computer system. Electrochemical tests were used to investigate the electrochemical characteristics of Ti/TiN/HA coated and shot peened materials in 0.9% NaCl solution at 36.5$^{\circ}C$. After each electrochemical measurement, the corrosion surface of each sample was investigated by SEM.

  • PDF

Surface Segregation of Sulfur in Ti and ti-Aluminide Alloys (티타늄과 티타늄 알루니마이드 합금에서 황의 표면석출)

  • 이원식;이재희
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.39-47
    • /
    • 1996
  • The segregation of S in electrotransport-purified polycrystaline $\alpha$-Ti and Ti-aluminide alloys has been studied by Auger electron spectroscopy(AES), Ion scattering spectroscopy(ISS) and Secondary ion mass spectrometry(SIMS) in the temperature range extending from 20 to $1000^{\circ}C$. The chemisorbed oxygen and carbon on Ti were observed to disappear at T>$400^{\circ}C$ after which the S signal increased to levels approaching 0.5 monolayer. At lower temperatures the presence of the surface oxygen and carbon appeared to inhibit the segregation, presumably because there were no available surfaces sites for the S emerging from the bulk. The activation energy for the S segregation in pure polycrystaline Ti was determined to be 16.7 kcal/mol, which, when compared to S segretation from single-crystal Ti, is quite small and suggests grain boundary or defect diffusion segregation kinetics. In the Ti-aluminide alloys, the presence of Al appeared to enhance the retention of surface oxygen which, in turn, substantially reduced the S segretation. The $\gamma$ alloy, with its high Al content, exhibited the greatest retention of surface oxygen and the smallest quantity of the S segregation(T$\simeq1000^{\circ}C$).

  • PDF

Plasma Electrolytic Oxidation of Ti-25Ta-xHf for Dental Implants (치과임플란트용 Ti-25Ta-xHf 합금의 플라즈마 전해 산화)

  • Kim, Jeong-Jae;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.6
    • /
    • pp.344-353
    • /
    • 2018
  • Plasma electrolytic oxidation of Ti-25Ta-xHf alloy in electrolyte containing Ca and P for dental implants was investigated using various experimental techniques. Ti-25Ta-xHf (x=0 and 15 wt.%) alloys were manufactured in an arc-melting vacuum furnace. Micropores were formed in PEO films on Ti-25Ta-xHf alloys in 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at 240 V, 270 V and 300 V for 3 min, respectively. The microstructure of Ti-25Ta-xHf alloys changed from (${\alpha}^{\prime}+{\alpha}^{{\prime}{\prime}}$) phase to (${\alpha}^{{\prime}{\prime}}+{\beta}$) phase by addition of Hf. As the applied potential increased, the number of pore and the area ratio of occupied by micro-pore decreased, whereas the pore size increased. The anatase phase increase as the applied potential increased. Also, the crystallite size of anatase-$TiO_2$ can be controlled by applied voltage.