• 제목/요약/키워드: Ti-Zr alloys

검색결과 140건 처리시간 0.027초

생체 친화적인 원소를 함유한 티타늄합금의 미세조직과 탄성계수 (Microstructures and Elastic Moduli of the Alloys Containing the Biocompatible Alloying Elements)

  • 정희원;김승언;현용택;이용태
    • 연구논문집
    • /
    • 통권33호
    • /
    • pp.157-165
    • /
    • 2003
  • New titanium alloys with a low elastic modulus have been developed for biomedical applications to avoid the stress shielding effect of the artificial prosthesis. The newly developed alloys contained the transition elements like Zr, Hf, Nb, Ta which were non-cytotoxicity elements and $\beta$ stabilizers. In the present paper the elastic moduli of Ti-xM containing Zr, Hf, Nb, Ta were evaluated by measuring the acoustic velocity (PEG). The effectiveness of the alloying elements for lowering the elastic modulus was investigated. In addition, the dominant factors for the low modulus were discussed. Ta was the most effective in lowering the elastic modulus of the alloys. The effectiveness of Hf was not acceptable for decreasing the elastic modulus. The dominant factor was the lattice parameter for Zr, and the poisson's ratio for Nb, Ta, respectively.

  • PDF

비정질 Zr-V-Ti 합금분말의 결정화에 따른 게터 특성 변화 (Changes of Getter properties by Crystallization of Amorphous Zr-V-Ti alloy Powders)

  • 박제신;김원백;백진선
    • 한국분말재료학회지
    • /
    • 제14권1호
    • /
    • pp.50-55
    • /
    • 2007
  • The hydrogen sorption speeds of $Zr_{57}V_{36}Ti_7$ amorphous alloy and its crystallized alloys were evaluated at room temperature. $Zr_{57}V_{36}Ti_7$ amorphous alloy was prepared by ball milling. The hydrogen sorption rate of the partially crystallized alloy was higher than that of amorphous. The enhanced sorption rate of partially crystallized alloy was explained in terms of grain refinement that has been known to promote the diffusion into metallic bulk of the gases. The grain refinement could be obtained by crystallization of amorphous phase resulting in the observed increase in sorption property.

Si and Mg Coatings on the Hydroxyapatite Film Formed Ti-29Nb-xHf Alloys by Plasma Electrolyte Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.152-152
    • /
    • 2017
  • Titanium and its alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element,such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}$-stabilizer and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Therefore, in this study, Si and Mg coatings on the hydroxyapatite film formed Ti-29Nb-xHf alloys by plasma electrolyte oxidation has been investigated using several experimental techniques. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. The electrolyte was Si and Mg ions containing calcium acetate monohydrate + calcium glycerophosphate at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Fe 함량에 따른 Ti-Mo-Fe 분말합금의 미세조직 및 기계적 특성 변화 (Effect of Iron Content on Microstructure and Mechanical Properties of Ti-Mo-Fe P/M Alloys)

  • 황효운;이용재;박지환;이동근
    • 한국분말재료학회지
    • /
    • 제29권4호
    • /
    • pp.325-331
    • /
    • 2022
  • Beta-titanium alloys are used in many industries due to their increased elongation resulting from their BCC structure and low modulus of elasticity. However, there are many limitations to their use due to the high cost of beta-stabilizer elements. In this study, biocompatible Ti-Mo-Fe beta titanium alloys are designed by replacing costly beta-stabilizer elements (e.g., Nb, Zr, or Ta) with inexpensive Mo and Fe elements. Additionally, Ti-Mo-Fe alloys designed with different Fe contents are fabricated using powder metallurgy. Fe is a strong, biocompatible beta-stabilizer element and a low-cost alloying element. The mechanical properties of the Ti-Mo-Fe metastable beta titanium alloys are analyzed in relation to the microstructural changes. When the Fe content increases, the tensile strength and elongation decrease due to brittle fracture despite a decreasing pore fraction. It is confirmed that the hardness and tensile strength of Ti-5Mo-2Fe P/M improve to more than 360 Hv and 900 MPa, respectively.

비정질 분말의 열간 성형법에 의한 벌크 비정질합금의 제조 (Fabrication of Bulk Metallic Glass Alloys by Warm Processing of Amorphous Powders)

  • 이민하;김도향
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.193-201
    • /
    • 2004
  • 1960년 Au-Si계 합금에서 처음으로 비정질상이 급속 응고법에 의해 보고된 이래/sup 1)/ 지난 40년 간 많은 합금계에서 비정질상이 보고되어졌다. 대표적으로 Fe-, Ni-, Co기 합금 등 많은 합금계에서 비정질상이 보고되었으나, 비정질상의 형성을 위해서는 약 105 K/s이상의 높은 냉각속도를 필요로 하였다. 1980년대 수백 K/s의 낮은 냉각속도 하에서도 비정질상이 형성될 수 있는 다원계 합금(multi-component alloy)이 Mg-Ln-(Ni, Cu, Zn), Ln-Al-TM 합금에서 보고되어 졌으나 많은 관심을 받지 못하다가 1993년 Zr-Ti-Ni-Cu-Be 합금에서 수 ㎝ 크기의 비정질합금 제조가 보고되면서 전 세계적으로 많은 관심을 받게 되었다. Zr-Ti-Ni-Cu-Be계 벌크 비정질 합금이 보고된 후 Zr-(Nb,Pd)-Al-TM, Pd-Cu-Ni-P, Fe-Co-Zr-Mo-W-B, Ti-Zr-Ni-Cu-Sn등 여러 합금계에서 벌크 비정질 합금이 보고되었다. (중략)

Antibacterial Properties of TiAgN and ZrAgN Thin Film Coated by Physical Vapor Deposition for Medical Applications

  • Kang, Byeong-Mo;Lim, Yeong-Seog;Jeong, Woon-Jo;Kang, Byung-Woo;Ahn, Ho-Geun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권5호
    • /
    • pp.275-278
    • /
    • 2014
  • We deposited TiAgN and ZrAgN nanocomposite coatings on pure Titanium specimens, by using arc ion plating (AIP) with single alloy targets. TiAg ZrAg alloy targets of 5 wt.%, 10 wt.% silver content by vacuum arc remelting (VAR), followed by homogenization for 2 hours at $1,100^{\circ}C$ in non-active Ar gas atmosphere and characterized these samples for morphology and chemical composition. We investigated the biocompatibility of TiAg and ZrAg alloys by examining the proliferation of L929 fibroblast cells by MTT test assay, after culturing the cells ($4{\times}10^4cells/cm^2$) for 24 hours; and exploring the antibacterial properties of thin films by culturing Streptococus Mutans (KCTC3065), using paper disk techniques. Our results showed no cytotoxic effects in any of the specimens, but the antibacterial effects against Streptococus Mutans appeared only in the 10 wt.% silver content specimens.

The Electrochemical Characteristics of Anodized Ti-29Nb-xZr Alloys

  • Lee, Kang;Choe, Han-Choel;Ko, Yeong-Mu
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.219-219
    • /
    • 2009
  • In this study, electrochemical impedance characteristics of anodic oxide layer formed on titanium ternary alloy surface have been investigated, Titanium oxide layers were grown on Ti-29Nb-xZr(x=3, 5, 7, 10 and 15 wt%) alloy substrates using phosphoric acid electrolytes.

  • PDF

Zr1-xTixV0.4Ni1.2Mn0.4-yMoy계 합금전극의 Mo 함량에 따른 물성 및 전극특성 (Electrode properties upon the substitution of Mo for Mn in Zr-basd AB2-type Hydrogen Storage Alloys)

  • 서찬열;박충년
    • 한국수소및신에너지학회논문집
    • /
    • 제11권4호
    • /
    • pp.189-202
    • /
    • 2000
  • $AB_2$ type Zr-based Laves phases alloys have been studied for potential application as a negative electrode in a Ni-MH battery. The $AB_2$-type electrodes have a much higher energy density than $AB_5$-type electrodes per weight, however they have some disadvantages such as poor activation behavior and cycle life etc. Nonetheless, the $AB_2$-type electrodes have been studied very extensively due to their high energy density. In this study, in order to develop the cycle life, the Mn of $AB_2$ alloy composition was substituted partially by Mo. The alloys were melted by arc furnace and remelted 4-5 times for homogeneity. The alloy powder was used below 200-325 mesh for experiments. The structures and phases of the alloys were analyzed by XRD, SEM and EDS, and measured the curve of a pressure-composition isotherms. The electrodes were prepared by cold pressing of the copper-coated(25 wt%) alloy powders, and tested by a half cell. The results are summarized as follows. The cycle life was improved with the increase of Mo amount in $Zr_{1-x}Ti_xV_{0.4}Ni_{1.2}Mn_{0.4}Mo_y$(x=0.3, 0.4) and the activation was faster, whereas the discharge capacity decreased.

  • PDF

벌크비정질합금의 액상 성형성 평가 (Evaluation on Liquid Formability of Bulk Amorphous Alloys)

  • 주혜숙;강복현;김기영
    • 한국주조공학회지
    • /
    • 제26권5호
    • /
    • pp.227-231
    • /
    • 2006
  • Liquid formability of bulk amorphous alloys is known to be very poor due to their high viscosity comparing with conventional metallic materials. It is important to have the fabricating technology of bulk amorphous alloys in order to make the components with complicated shape. Liquid formability includes the mold cavity filling ability and the hot tear(crack) resistance during solidification. A mold made of a commercial tool steel for the formability test was designed. Melting was performed by the arc melting furnace with melting capacity of 200 g in an argon atmosphere. Liquid formability and glass forming ability of Cu base and Ni base bulk amorphous alloys were measured and evaluated. Mold filling ability of Ni-Zr-Ti-Si-Sn alloy was better than that of Cu-Ni-Zr-Ti alloy, however the reverse is the hot tear resistance. Bulk amorphous alloy is very susceptible to crack if partial crystallization occurs during solidification. Crack resistance was thought to be closely related with the glass forming ability.