• 제목/요약/키워드: Ti-TiC

Search Result 5,416, Processing Time 0.032 seconds

Preparation and Characterization of Fine $TiO_2$ Powders by Vapor-Phase Hydrolysis of TiCl4 (사염화티타늄의 기상가수분해반응에 의한 $TiO_2$ 미분의 제조 및 입자특성)

  • 염선민;김광호;신동원;박찬경
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.525-532
    • /
    • 1992
  • TiO2 fine powder was synthesized in the gas phase by chemical vapor deposition using hydrolysis of TiCl4. Content of rutile phase in the powder was investigated. Powder characteristics such as size, crystallinity and morphology were also studied by means of TEM, SEM and XRD. Rutile phase in TiO2 powder started to be formed from 100$0^{\circ}C$ and the content increased with the reaction temperature and TiCl4 concentration. As the temperature increased from 80$0^{\circ}C$ to 140$0^{\circ}C$, the primary particle size increased while secondary particle size decreased. Spherical secondary particle with fine primary crystals agglomerated was produced at low temperature of 80$0^{\circ}C$ whereas the grown primary particle being final particle size was produced at higher temperature of 140$0^{\circ}C$. Other effects of TiCl4 and H2O partial pressures on particle size were also reported in this study.

  • PDF

Brazing of TiAl and AISI4140 steel using an Ag-Cu-Ti insert metal (Ag-Cu-Ti삽입금속을 이용한 TiAl과 AISI4140 강의 브레이징)

  • 구자명;이원배;김명균;김대업;김영직;정승부
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.45-47
    • /
    • 2004
  • We have investigated the microstructures and the mechanical properties of TiA1/Cerameti1721 (Ag-Cu-Ti insert metal)/AISI4140 joints at 800$^{\circ}C$ for 60 to 300s using induction brazing method. Two continuous reaction layers of AICuTi and AICu$_2$Ti were formed at the interface between the braze and TiAl, whose thickness increased with the brazing time. The braze consisted of Ag-rich, Ti-rich, CuTi and CuTi$_2$ phases. The maximum tensile strength achieved 296MPa, which was 71% of that of TiAl base metal, for the specimen bonded at 800$^{\circ}C$. Further increase of the brazing temperature and time resulted in constant deterioration of its bonding strength due to large amount of brittle IMC.

  • PDF

A study on the hardening characterstics of the TiC layer formed by the reactive deposition technique (반응석출법에 의해 피복된 TiC의 경화거동에 관한 연구)

  • Nam, K.S.;Byon, E.S.;Lee, G.H.;Kim, D.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.288-297
    • /
    • 1994
  • In this study, lattice parameter, binding energy and microstructures of TiC layer according to the addition of Fe, Cr were investigated in the reactive deposition coating. From the results, the lattice parameters of the TiC layers by using ferro-titanium as a precursor were 4.329~4.339A but the lattice parameters of the TiC layers formed by ferro-titanium and ferro-chromium decreased to 4.316~4.330A. The hardness of the former's was HV(100g) 3,000~3,400kg/mm and the hardness of the latter's was HV (100g) 3,800~3,900. But, regardless of Cr and Fe, the binding energy of TiC layers were 454.75 eV for $Ti2p_{3/2}$ and were 281.85 eV for Cls. Meanwhile, the TiC layers were densified by addition of Fe, Cr and internal defects were reduced Therefore. it can be concluded that the remarkable hardness increment was obtained by the improvement of microstructures of TiC rather than the increase of bond strength or Peierls stress.

  • PDF

Process Parameter Control of Arc Melting Process for Ti3SiC2 MAX Phase Synthesis (Ti3SiC2 MAX Phase 합성을 위한 Arc Melting 공정 제어)

  • Nou, Chang Wan;Kim, Byeong Guen;Bae, Sang Hyun;Choi, Soon-Mok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.515-520
    • /
    • 2020
  • The Ti3SiC2 MAX phase was synthesized by arc-melting process under three different processing times. We confirmed that the reaction between the TiCX phase and Ti-Si liquid phase is important for the synthesis of the Ti3SiC2 MAX phase. Results suggest that the Ti3SiC2 MAX phase decomposed when the arc-melting time was greater than 80s. Herein, we aim to determine the detailed parameters for the reported arc-melting process, which can provide useful insights on the synthesis of the Ti3SiC2 MAX phase by arc-melting process. Furthermore, we compared the electrical characteristics and densities of the three samples.

Study on the Tic Coating of Steel by C.V.D. Process (CVD법에 의한 강의 TiC 피복에 관하여)

  • 강국해;최진일;영동영
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.4
    • /
    • pp.208-217
    • /
    • 1982
  • To study the effect of TiC coating on weight change, microhardness, wear and heat - resistance of TiC layer, chemical vapour deposition on the various substrates has been carried out with the gaseous mixture of TiCl4, toluene, and H2 in the temperature range of 900 - 1000$^{\circ}C$. The results obtained are as follows ; (1) There is a limited value of carrier and reductant H2 gas flow rate, above which deteriorate effect on the TiC depoition arises (2) Increased thickness of TiC layer was resulted with increasing temperature and time. Better deposition was obtained with stainless steels and the best results were introduced by cobalt coating of substrates. (3) Wear resistance of the TiC coated specimen improved markedly. Heat resistivity of the coated steel showed excellent result, whereas the coated stainless Steels were infer-ior to the substrate.

  • PDF

The effect of the addition of TiO2 in the preparation of (Al2O3-SiC)- SiC composite powder by SHS Process (SHS법을 이용한 복합분말(Al2O3-SiC) 제조시 TiO2첨가의 영향)

  • Yun, Gi-Seok;Yang, Beom-Seok;Lee, Jong-Hyeon;Won, Chang-Hwan
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • $Al_2O_3-SiC$ and $Al_2O_3-SiC$-TiC composite powders were prepared by SHS process using $SiO_2,\;TiO_2$, Al and C as raw materials. Aluminum powder was used as reducing agent of $SiO_2,\;TiO_2$ and activated charcoal was used as carbon source. In the preparations of $Al_2O_3-SiC$, the effect of the molar ratio in raw materials, compaction pressure, preheating temperature and atmosphere were investigated. The most important variable affecting the synthesis of $Al_2O_3-SiC$ was the molar ratio of carbon. Unreactants remained in the product among all conditions without compaction. The optimum condition in this reaction was $SiO_2$: Al: C=3: 5: 5.5, 80MPa compaction pressure under Preheating of $400^{\circ}C$ with Ar atmosphere. However there remains cabon in the optimum condition. The effect of $TiO_2$ as additive was investigated in the preparations of $Al_2O_3-SiC$. As a result of $TiO_2$ addition, $Al_2O_3-SiC$-TiC composite powder was prepared. The $Al_2O_3$ powder showed an angular type with 8 to $15{\mu}m$, and the particle size of SiC powder were 5~$10{\mu}m$ and TiC powder were 2 to $5{\mu}m$.

A.C. Impedance Properties of HA/Ti Compound Layer coated Ti-30Ta-(3~15)Nb Alloys (Ti-30Ta-(3~15)Nb 합금에 HA/Ti 복합 코팅한 표면의 교류임피던스 특성)

  • Jeong, Y.H.;Lee, H.J.;Moong, Y.P;Park, G.H.;Jang, S.H.;Son, M.K.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.181-188
    • /
    • 2008
  • A.C. impedance properties of HA/Ti compound layer coated Ti-30Ta-($3{\sim}15$)Nb alloys have been studied by electrochemical method. Ti-30Ta binary alloys contained 3, 7, 10 and 15 wt% Nb were manufactured by the vacuum furnace system. And then specimen was homogenized at $1000^{\circ}C$ for 24 hrs. The sample was cut and polished for corrosion test and coating. It was coated with HA/Ti compound layer by magnetron sputter. The non-coated and coated morphology of Ti alloy were analyzed by X-ray diffractometer (XRD), energy X-ray dispersive spectroscopy (EDX) and filed emission scanning electron microscope (FE-SEM). The corrosion behaviors were investigated using A.C. impedance test (PARSTAT 2273, USA) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. Ti-30Ta-($3{\sim}15\;wt%$)Nb alloys showed the ${\alpha}+{\beta}$ phase, and $\beta$ phase peak was predominantly appeared in the case of increasingly Nb contents. The microstructures of Ti alloy were transformed from needle-like structure to equiaxed structure as Nb content increased. From the analysis of coating surface, HA/Ti composite surface uniformed coating layer with 750 nm thickness. The growth directions of film were (211), (112), (300) and (202) for HA/Ti composite coating on the surface after heat treatment at $550^{\circ}C$, whereas, the growth direction of film was (110) for Ti coating. The polarization resistance ($R_p$) of HA/Ti composite coated Ti-alloys were higher than those of the Ti and HA coated samples in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. Especially, corrosion resistance of Ti-Ta-Nb system increased as Nb content increased.

Property Evaluation of Ti Powder and Its Sintered Compacts Prepared by Ti Scrap (티타늄 스크랩을 이용한 분말제조 및 소결 성형체의 특성평가)

  • Lee, Seung-Min;Choi, Jung-Chul;Park, Hyun-Kuk;Woo, Kee-Do;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.125-131
    • /
    • 2010
  • In this study, Ti powders were fabricated from Ti scrap by the Hydrogenation-Dehydrogenation (HDH) method. The Ti powders were prepared from the spark plasma sintering (SPS) and their microstructure was investigated. Hydrogenation reactions of Ti scrap occurred at near $450^{\circ}C$ with a sudden increase in the reaction temperature and the decreasing pressure of hydrogen gas during the hydrogenation process in the furnace. The dehydrogenation process was also carried out at $750^{\circ}C$ for 2 hrs in a vacuum of $10^{-4}$ torr. After the HDH process, deoxidation treatment was carried out with the Ca (purity: 99.5%) at $700^{\circ}C$ for 2 hrs in the vacuum system. It was found that the oxidation content of Ti powder that was deoxidized with Ca showed noticeably lower values, compared to the content obtained by the HDH process. In order to fabricate the Ti compacts, Ti powder was sintered under an applied uniaxial punch pressure of 40 MPa in the range of $900-1200^{\circ}C$ for 5 min under a vacuum of $10^{-4}$ torr. The relative density of the compact was 99.5% at $1100^{\circ}C$ and the tensile strength decreased with increasing sintering temperature. After sintering, all of the Ti compacts showed brittle fracture behavior, which occurred in an elastic range with short plastic yielding up to a peak stress. Ti improved the corrosion resistance of the Ti compacts, and the Pd powders were mixed with the HDH Ti powders.

Influence of the Molar Ratio of Cl-total:Ti+4 on the Crystalline Structure in Preparation of TiO2 from Aqueous TiOCl2 Solution by Homogeneous Precipitation Method (균일침전법에 의한 이산화티타늄 제조공정에서 TiOCl2 수용액의 Cl-total:Ti+4의 몰 비율이 TiO2 결정구조에 미치는 영향)

  • Lee, Jeong Hoon;Yang, Yeong Seok
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.785-789
    • /
    • 2005
  • $TiO_2$ powders with rutile and brookite phases were synthesized through homogeneous precipitation of the aqueous $TiOCl_2$ solution, prepared from $TiCl_4$ and HCl solution, and their properties were characterized. Based on the analytical results appropriate molar ratios of ${Cl^-}_{total}:Ti^{+4}$ in precipitating solution for synthesis of pure rutile phase and a mixture of rutile and brookite phases were proposed. The volumetric proportion of brookite increased with increasing HCl concentration under a typical condition obtaining mixed phase of rutile and brookite. The brookite phase in the mixture was transformed to anatase phase by heat treatment at about $800^{\circ}C{\sim}850^{\circ}C$, and finally converted to rutile phase at $1000^{\circ}C$.

Micro-EDM Feasibility and Material Properties of Hybrid Ti2AlC Ceramic Bulk Materials (하이브리드 Ti2AlC 세라믹 소결체의 재료특성 및 Micro-EDM 유용성 연구)

  • Jeong, Guk-Hyun;Kim, Kwang-Ho;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.301-306
    • /
    • 2014
  • Titanium alloys are extensively used in high-temperature applications due to their excellent high strength and corrosion resistance properties. However, titanium alloys are problematic because they tend to be extremely difficult-to-cut material. In this paper, the powder synthesis, spark plasma sintering (SPS), bulk material characteristics and machinability test of hybrid $Ti_2AlC$ ceramic bulk materials were systematically examined. The bulk samples mainly consisted of $Ti_2AlC$ materials with density close to theoretical value were synthesized by a SPS method. Random orientation and good crystallization of the $Ti_2AlC$ was observed at $1100^{\circ}C$ for 10 min under SPS sintering conditions. Scanning electron microscopy results indicated a homogeneous distribution and nano-laminated structure of $Ti_2AlC$ MAX phase. The hardness and electrical conductivity of $Ti_2AlC$ were higher than that of Ti 6242 alloy at sintering temperature of $1000^{\circ}C{\sim}1100^{\circ}C$. Consequently, the machinability of the hybrid $Ti_2AlC$ bulk materials is better than that of the Ti 6242 alloy for micro-EDM process of micro-hole shape workpiece.