• Title/Summary/Keyword: Ti-Ni alloy

Search Result 391, Processing Time 0.027 seconds

The Mixing Ratio Effect of Insert Metal Powder and Insert Brazing Powder on Microstructure of the Region Brazed on DS Ni Base Super Alloy (일방향응고 Ni기 초내열합금 천이액상화산접합부의 미세조직에 미치는 모재와 삽입금속 분말 혼합비의 영향)

  • Ye Chang-Ho;Lee Bong-Keun;Song Woo-Young;Oh In-Seok;Kang Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.99-105
    • /
    • 2005
  • The mixing ratio effect of the GTD-111(base metal) powder and the GNI-3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder on TLP(Transient Liquid Phase) bonding phenomena and mechanism was investigated. At the mixing ratio of the base metal powder under $50wt\%$, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solid phases in the bonded interlayer grew epitaxially from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The number of grain boundaries farmed at the bonded interlayer corresponded with those of base metal. At the mixing ratio above $60wt\%$, the base metal powder melted only at the surface of the powder and the amount of the base metal dissolution was also less at the initial time. Nuclear of solids firmed not only from the base metal near the bonded interlayer but also from the remained base metal powder in the bonded interlayer. Finally, the polycrystal in the bonded interlayer was formed when the isothermal solidification finished. When the isothermal solidification was finished, the contents of the elements in the boned interlayer were approximately equal to those of the base metal. Cr-W borides and Cr-W-Ta-Ti borides formed in the base metal near the bonded interlayer. And these borides decreased with the increasing of holding time.

Structural analysis of Precipitates in a Nickel based Cast Single Crystal of CMSX 6 (니켈계 초합금 CMSX 6 단결정 주조조직의 석출물구조 분석)

  • An, Seong-Uk;Larionov, V.;Grafas, I.;Kim, Su-Cheol;Im, Ok-Dong;Kim, Seung-Ho;Jin, Yeong-Hun;Choe, Jong-Su;Lee, Jae-Hun;Lee, Sang-Jun;Seo, Dong-Lee;Lee, Tae-Hun;Heo, Mu-Yeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1165-1169
    • /
    • 1998
  • A single crystal cast blade was manufactured by CMSX 6, one of the first generarion nickel based single crystal superalloys by the selector method in a vacuum furnace. The single crystal has been grown with cooling rate of 2.5 mm/min, after pouring the molten alloy of 163$0^{\circ}C$ to the mold heated to 150$0^{\circ}C$. The cast structure could be classified into matrix (dendrite) and eutectic regions in ${\gamma}$'shape and size. The eutectic region showed higher Ti content. As the additional results of ${\gamma}$'precipitates by EPMA and CBED analysis the ${\gamma}$'size was less than 0.5~0.7$\mu\textrm{m}$, showing the chemical composition close to Ni$_3$Al of Ll$_2$ lattice structure. But ${\gamma}$'size has increased to bigger than 1.0$\mu\textrm{m}$, being near to eutectic region, changing its shape to bar or huge block types. These showed the chemical structure near to Ni$_3$Ti of D $O_{24}$ lattice structure. Therefore, ${\gamma}$'morphology of dendrite and eutectic regions depends absolutely on its chemical composition and lattice structure.

  • PDF

High temperature properties of surface-modified Hastelloy X alloy (표면처리에 따른 Hastelloy X 합금의 고온물성)

  • Cho, Hyun;Lee, Byeong-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.183-189
    • /
    • 2012
  • Surface treatments and their effects on high temperature properties for the Hastelloy X, which is a promising candidate alloy for high temperature heat-transport system, have been evaluated. For TiAlN and $Al_2O_3$ overlay coatings, the two different PVD (physical vapor deposition) methods using an arc discharge and a sputtering, were applied, respectively. In addition, a different surface treatment method of the diffusion coating by a pack cementation of Al (aluminiding) was also adopted in this study. To achieve enhanced thermal oxidation resistance at $1000^{\circ}C$ by suppressing the inhomogeneous formation of thick $Cr_2O_3$ crust at the surface region, a study for the surface modification methods on the morphological and structural properties of Hastelloy X substrates has been conducted. The structural and compositional properties of each sample were characterized before and after heat-treatment at $1000^{\circ}C$ under air and He environment. The results showed that the Al diffusion coating showed the more enhanced high temperature properties than the overlay coatings such as the suppressed thick $Cr_2O_3$ crust formation and lower wear loss.

Nonlinear earthquake capacity of slender old masonry structures prestressed with steel, FRP and NiTi SMA tendons

  • Preciado, Adolfo;Ramirez-Gaytan, Alejandro;Gutierrez, Nayar;Vargas, David;Falcon, Jose Manuel;Ochoa, Gil
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.213-226
    • /
    • 2018
  • This paper focuses on the seismic protection of slender old masonry structures by the implementation of prestressing devices at key locations. The devices are vertically and externally located inside the towers in order to be reversible and calibrated. An extensive parametric study on a selected slender tower is carried out based on more than 100 nonlinear static simulations aimed at investigating the impact of different parameters on the seismic performance: (i) different prestressing levels; (ii) shape memory alloy superelasticity and (iii) changes in prestressing-forces in all the stages of the analysis until failure and masonry toe crushing. The tendon materials under analysis are conventional prestressing steel, fiber-reinforced polymers of different fibers and shape memory alloys. The parametric study serves to select the most suitable prestressing device and optimal prestressing level able to dissipate more earthquake energy. The seismic energy dissipation is evaluated by comparing the structural capacity curves in original state and retrofitted.

Seismic behavior of steel column-base-connection equipped by NiTi shape memory alloy

  • Jamalpour, Reza;Nekooei, Masoud;Moghadam, Abdolreza Sarvghad
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.109-120
    • /
    • 2017
  • The behavior of moment resistant steel structures depends on both the beam-column connections and columns foundations connections. Obviously, if the connections can meet the adequate ductility and resistance against lateral loads, the seismic capacity of these structures will be linked practically to the performance of these connections. The shape memory alloys (SMAs) have been most recently used as a means of energy dissipation in buildings. The main approach adopted by researchers in the use of such alloys is firstly bracing, and secondly connecting the beams to columns. Additionally, the behavior of these alloys is modeled in software applications rarely involving equivalent torsional springs and column-foundation connections. This paper attempts to introduce the shape memory alloys and their applications in steel structural connections, proposing a new steel column-foundation connection, not merely a theoretical model but practically a realistic and applicable model in structures. Moreover, it entails the same functionality as macro modeling software based on real behavior, which can use different materials to establish a connection between the columns and foundations. In this paper, the suggested steel column-foundation connection was introduced. Moreover, exploring the seismic dynamic behavior under cyclic loading protocols and the famous earthquake records with different materials such as steel and interconnection equipment by superelastic shape memory alloys have been investigated. Then, the results were compared to demonstrate that such connections are ideal against the seismic behavior and energy dissipation.

High alloyed new stainless steel shielding material for gamma and fast neutron radiation

  • Aygun, Bunyamin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.647-653
    • /
    • 2020
  • Stainless steel is used commonly in nuclear applications for shielding radiation, so in this study, three different types of new stainless steel samples were designed and developed. New stainless steel compound ratios were determined by using Monte Carlo Simulation program Geant 4 code. In the sample production, iron (Fe), nickel (Ni), chromium (Cr), silicium (Si), sulphur (S), carbon (C), molybdenum (Mo), manganese (Mn), wolfram (W), rhenium (Re), titanium (Ti) and vanadium (V), powder materials were used with powder metallurgy method. Total macroscopic cross sections, mean free path and transmission number were calculated for the fast neutron radiation shielding by using (Geant 4) code. In addition to neutron shielding, the gamma absorption parameters such as mass attenuation coefficients (MACs) and half value layer (HVL) were calculated using Win-XCOM software. Sulfuric acid abrasion and compressive strength tests were carried out and all samples showed good resistance to acid wear and pressure force. The neutron equivalent dose was measured using an average 4.5 MeV energy fast neutron source. Results were compared to 316LN type stainless steel, which commonly used in shielding radiation. New stainless steel samples were found to absorb neutron better than 316LN stainless steel at both low and high temperatures.

Tensile Deformation Behavior of Zr-based Bulk Metallic Glass Composite with Different Strain Rate (Zr계 벌크 비정질 복합재의 변형률 속도에 따른 인장 변형 거동 연구)

  • Kim, Kyu-Sik;Kim, Ji-Sik;Hub, Hoon;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.500-507
    • /
    • 2009
  • Tensile deformation behavior with different strain rate was investigated. $Zr_{56.2}Ti_{13.8}Nb_{5.0}Cu_{6.9}Ni_{5.6}Be_{12.5}$(bulk metallic glass alloy possessed crystal phase which was called $\beta$-phase of dendrite shape, mean size of $20{\sim}30{\mu}m$ and occupied 25% of the total volume) was used in this study. Maximum tensile strength was obtained as 1.74GPa at strain rate $10^2s^{-1}$ and minimum strength was found to be 1.6GPa at $10^{-1}s^{-1}$. And then, maximum plastic deformation occurred at the strain rate of $5{\times}10^{-2}s^{-1}$ and represented 1.75%, though minimum plastic deformation showed 0%. In the specific range of strain rate, relatively higher plastic deformation and lower ultimate tensile strength were found with lots of shear bands. The fractographical observation after tensile test indicated that vein like pattern on the fracture surface was well developed especially in the above range of strain rate.

Tensile Deformation Behavior of Zr-based Bulk Metallic Glass Composite with Different Strain Rate (Zr 계 벌크 비정질 복합재의 변형률 속도에 따른 인장 변형 거동)

  • Kim, Kyu-Sik;Kim, Ji-Sik;Huh, Hoon;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.353-354
    • /
    • 2009
  • Tensile deformation behavior with different strain rate was investigated. $Zr_{56.2}Ti_{13.8}Nb_{5.0}Cu_{6.9}Ni_{5.6}Be_{12.5}$ (bulk metallic glass alloy possessed crystal phase which was called $\beta$-phase of dendrite shape, mean size of $20{\sim}30{\mu}m$ and occupied 25% of the total volume) was used in this study. Maximum tensile strength was obtained as 1.74Gpa at strain rate of $10^2/s$ and minimum strength was found to be 1.6GPa at $10^{-1}/s$. And then, maximum plastic deformation occurred at the strain rate of $5{\times}10^{-2}/s$ and represented 1.75%, though minimum plastic deformation showed 0%. In the specific range of strain rate, relatively higher plastic deformation and lower ultimate tensile strength were found with lots of shear bands. The fractographical observation after tensile test indicated that vein like pattern on the fracture surface was well developed especially in the above range of strain rate.

  • PDF

New Material and Processing Issues for High Quality Parts by Micro-MIM

  • Rota, A.;Imgrund, Ph.;Haack, J.;Petzoldt, F.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.34-35
    • /
    • 2006
  • The development of Micro MIM as a new manufacturing process for metallic micro parts made of advanced functional materials has been the subject of considerable research over the last years. This paper addresses important quality aspects on processing of new materials by Micro-MIM. Three examples of new functional materials that can be processed are reviewed in this paper. The first example is two-component-Micro-MIM to obtain multi-functional devices. A micro positioning encoder consisting of a magnetic / non-magnetic material combination is presented. The second issue is series production of the replicate of the smallest human bone in the ear (stapes) from Titanium as an example of medical application. Quality assurance and reproducibility in terms of injection moulding parameters are addressed. In the third part, first results on the processing of the shape memory alloy NiTi by Micro-MIM are presented. Potential applications include biocompatible devices and transportation, for example automotive and aerospace. Processing routes and initial microstructures obtained are discussed.

  • PDF

Effect of Solution Annealing Heat Treatment on the Localized Corrosion Resistance of Inconel 718 (Inconel 718의 국부 부식 저항성에 미치는 용체화 열처리의 영향)

  • Yoonhwa Lee;Jun-Seob Lee;Soon Il Kwon;Jungho Shin;Je-hyun Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.359-367
    • /
    • 2023
  • The localized corrosion resistance of the Ni-based Inconel 718 alloy after solution heat treatment was evaluated using electrochemical techniques in a solution of 25 wt% NaCl and 0.5 wt% acetic acid. Solution heat treatment at 1050 ℃ for 2.5 hours resulted in an increased average grain diameter. Both Ti carbides (10 ㎛ diameter) and Nb-Mo carbides (1 - 9 ㎛ diameter) were distributed throughout the material. Despite heat treatment, the shape and composition of these carbides remained consistent. An increase in solution temperature led to a decrease in pitting potential value. However, the pitting potential value of solution heat-treated Inconel 718 was consistently higher than that of as-received Inconel 718 at all tested temperatures. Localized corrosion initiation occurred at 0.4 VSSE in a temperature environment of 80 ℃ for both as-received and solution heat-treated Inconel 718 alloys. X-ray photoelectron spectroscopic analysis indicated that the composition of the passive film formed on specimen surfaces remained largely unchanged after solution heat treatment, with O1s, Cr2p3/2, Fe2p3/2, and Ni2p3/2 present. The difference in localized corrosion resistance between as-received and solution heat-treated Inconel 718 alloys was attributable to microstructural changes induced by the heat treatment process.