• Title/Summary/Keyword: Ti-Ni alloy

Search Result 391, Processing Time 0.029 seconds

THE EFFECTS OF SPURE AND INVENTS ON THE CASTING ACCURACY AND POROSITY OF TI-NI CASTINGS

  • Cho Lee-Ra;Yi Yang-Jin;Park Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.342-350
    • /
    • 2003
  • Statement of problem. Titanium-Nickel alloy might be used in various prosthetic restorations since it has a unique property such as super-elasticity and high fatigue resistance. However, little is known about the casting ability of this alloy. Purpose. This in vitro study compared the casting accuracy and the porosity made with different investments and various sprue designs to ascertain what casting condition would be better for the fabrication of Ti-Ni cast restorations. Material and methods. A total of 70 Ti-Ni alloy crowns were made and divided into 7 groups of 10 copings on a metal master die. For measuring the effect of the sprue numbers, two groups with one and two 8-gauge sprues were compared. Moreover, the results of the conventional sprue and the double thickness sprues were compared. Three investments were used; carbon free phosphate bonded investment, titanium investment and gypsum bonded investment. The cast restorations were evaluated at 48 points on the entire circumferential margin with a stereomicroscope measuring in micrometers. Each crown was radiographically examined for casting defects and porosity. Data on casting accuracy were analyzed using two-way and Post hoc Scheffe's comparison to determine whether significant differences existed at the 95% confidence level. Student-Newman-Keuls test were performed to identify significant differences in the number of voids. Results. The double sprueing group and double thickness group had significantly less marginal discrepancy than the single sprueing group (P<.05 and P<.01, respectively). The castings with phosphate bonded investment showed the least marginal discrepancy and the smoothest surface. The castings invested in the gypsum bonded investment had the greatest gaps in margin and the largest failure rate. The double sprueing group and phosphate bonded investment group had significantly smaller void numbers and smaller void size than the other groups. Conclusion. Within the limitations of this in vitro study, the casting accuracy of the groups using thicker, double sprue design and the phosphate bonded investment was significantly superior. Moreover, void number and size were less than other groups.

Evaluation of Bond Strength in cp-Ti and Non-precious Metal-Ceramic System Using a Gold Bonding Agent (티타늄과 비귀금속 합금에 중간층으로 적용한 Au bonding agent의 금속-도재 결합에 대한 평가)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.31 no.4
    • /
    • pp.15-23
    • /
    • 2009
  • The aim of this study was to evaluate the bond strength of using a Au bonding agent applied on cp-Ti and nonprecious metal-gold-ceramic system. Metallic frameworks(diameter: 5mm, height: 20mm)(N=56, n=7per group) cast in Ni-Cr alloy, Co-Cr alloy and cp-Ti were obtained using acrylic templates and airborne particle abraded with $110{\mu}m$ aluminum oxide. Au bonding agent was applied on wash opaque firing as intermediate layer. SEM and SEM/EDS line profile were performed on the cutting the cross-section of the metal substrate-porcelain with intermediate Au coating. Groups were tested using shear bond strength(SBS) testing at 0.5mm/min. The mean SBS values for the ceramic-Au layer-metal combination were significantly higher than those ceramic-metal combination. While ceramic-Au layer-cp-Ti combinations failed to increase bond strength instead of using a titanium bonding porcelain. The appication of using Au intermediate layer significantly improve the bond strength combination with metal-ceramic system.

  • PDF

Surface Characteristics of Sintered Ni-Cr Alloy for Dental Casting (치과주조용 Ni-Cr합금 소결체의 표면특성)

  • Kim, Hyeon-Ju;Kim, Eun-Sil;Kim, Seong-Hwan;Jo, Chae-Ik;Park, Geun-Hyeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.193-193
    • /
    • 2013
  • 본 연구에서는 치과용 주조합금의 개발을 위하여 Ni-Cr 및 Ni-Cr-Ti합금을 소결체를 제조하고 그 표면특성을 조사하였다. 결정조직은 Ti가 참가되면 결정립이 미세화되는 경향을 나타내었으며 Ti가 첨가되면 결정구조가 다르게 나타났다. Ti함량이 증가할수록 경도 값은 증가하였으며 Ti가 10wt% 첨가되었을 때 가장 높은 값을 보였다. 또한 압분체 < 소결체 < 벌크상태로 증가하는 경향을 보였다. 부식실험 결과 내식성은 Ti 함량이 증가함에 따라 증가하는 경향을 보였으며 벌크상태의 시편이 가장 좋은 내식성을 보였다.

  • PDF

Mechanical Properties and Consolidation of Nanostructured NiTi Alloy by Rapid Sintering (급속소결에 의한 나노구조 NiTi 합금의 제조 및 기계적 특성)

  • Kim, Na-Ri;Ko, In-Yoong;Cho, Sung-Wook;Kim, Wonbaek;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.819-824
    • /
    • 2010
  • NiTi powders were synthesized during high energy ball milling for 10 h. Highly dense nanostructured NiTi with a relative density of up to 99% was obtained within 1 minute by high frequency induction heated sintering under a pressure of 80 MPa. The grain size, microstructure, and mechanical properties of NiTi were investigated. The grain size and hardness of TiNi are about 122 nm and $590kg/mm^2$, respectively.

Electrochemical Characteristics of Tooth Colored NiTi Wire (치아색으로 코팅된 NiTi 와이어의 전기화학적 특성)

  • Kim, Won-Gi;Cho, Joo-Young;Choe, Han-Cheol;Lee, Ho-Jong
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.223-232
    • /
    • 2010
  • NiTi alloy has been used for orthodontic wire due to good mechanical properties, such as elastic strength, friction resistance, and high corrosion resistance. Recently, these wire were coated by polymer and ceramic materials for aesthetics. The purpose of this study was to investigate electrochemical characteristics of tooth colored NiTi wire using various instruments. Wires (round type and rectangular type) were used, respectively, for experiment. Polymer coating was carried out for wire. Specimen was investigated with optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDS). The corrosion properties of the specimens were examined using potentiodynamic tests (potential range of -1500 ~ 2000 mV) and electrochemical impedance spectroscopy (frequency range of 100 kHz ~ 10 mHz) in a 0.9 % NaCl solution by potentiostat. From the results of polarization behavior, the passive region of non-coated NiTi wire showed largely, whereas, the passive region of curved NiTi wire showed shortly in anodic polarization curve. In the case of coated NiTi wire, pitting and crevice corrosion occurred severely at interface between non-coated and coated region. From the results of EIS, polarization resistance(Rp) value of non-coated round and rectangular NiTi wire at curved part showed $5.10{\times}10^5{\Omega}cm^2$ and $4.43{\times}10^5{\Omega}cm^2$. lower than that of coated NiTi wire. $R_p$ of coated round and rectangular NiTi wire at curved part showed $1.31{\times}10^6{\Omega}cm^2$ and $1.19{\times}10^6{\Omega}cm^2$.

A study on the Development of Bidirectional Acutator using NiTi Shape Memory Alloy (NiTi 형상기억합금을 이용한 차동식 액츄에이터 개발에 관한 연구)

  • Jeong, S. H.;Kim, K. S.;Jang, W. Y.;Kim, H. U.;Cha, K. R.;Song, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.723-726
    • /
    • 2002
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research of dynamic characteristics is very deficient. In this paper, the helical spring is fabricated with NiTi SMA wire of high resistivity The farce, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA actuator is analyzed.

  • PDF

The Strength Evaluation of TiNi/A16061 Composite by Using Finite Element Method (유한요소법을 이용한 TiNi/A16061 형상기억 복합재료의 강도평가)

  • Park, Yeong-Cheol;Lee, Gyu-Chang;Park, Dong-Seong;Lee, Dong-Hwa;Dong Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.72-78
    • /
    • 2002
  • Thermomechanical behavior and mechanical properties of A16061 matrix composite with shape memory alloy(SMA) fiber are studied by using fnite element analysis(FEA). The smartness of the SMA is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when healed after being prestrained. In this paper, an analytical model is assumed two dimentional axisymetric model of one fiber and around the matrix. To evaluate the strength of composite usig FEM, the concept of smart composite was simulated on computer. The Shape memory effect(SME) simulation is very difficult using FEM because of the nonlinear analysis and the elastic plastic analysis. Thus, in this paper, the FEA was carried out at two critical temperature conditions; room temperature and high temperature(363K). The analysis is compare the finite element analysis result with the test result for the analysis validity.

Characterization of Co-Ni Based Ferromagnetic Shape Memory Alloy (자성 Co-Ni 계 형상기억합금의 특성)

  • Han, Ji-Won;Park, Sung Bum
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.8-13
    • /
    • 2015
  • The magnetic shape memory alloys have recently received a lot of attention due to the considerable progress achieved in understanding the particular importance and the development of the factors. Among these alloys, the ferromagnetic Co-Ni- alloys have been concerned specially because of the thermoelastic character of the fcc (g) - bct (a) martensitic transformation which exhibits under the action of the temperature (shape memory effect), the stress (superelasticity) and the magnetic field (magnetoelasticity). The morphological, the crystallographical, and the thermal characteristics of thermally induced martensite in Co-35.3Ni-11.3Al(wt.%) and Co-28.1Ni-47.4Fe-3.3Ti (wt.%) alloy have been investigated by the scanning electron microscope (SEM), the X-ray Diffraction (XRD), and the differential scanning calorimeter (DSC).

Effects of Surface Treatment of Cathode Materials on the Electrodeposition Behavior of Fe-Ni Alloy (표면처리와 전극 재료가 철-니켈 합금 도금에 미치는 영향)

  • Kang, Na Young;Lee, Jae Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.71-75
    • /
    • 2022
  • In this research, Fe-Ni alloy films were electrodeposited on stainless steel (SS304 and SS430) and Ti plates to investigate the effects of surface conditions of cathode on deposits. The Ti plates were electropolished in 3 M H2SO4-methanol electrolytes at various conditions before electrodeposition, and unpolished Ti and the optimized specimen, polished at 10 V for 8 min, were used as cathode. The anomalous codeposition, the phenomenon which more active Fe is reduced preferentially, occurred on all substrate, however, there were differences in composition of all deposits. As the results of potential monitoring during electrodeposition, it was confirmed that the larger overpotential was applied to the deposition cell when using Ti cathode, leading to high Fe content of deposits from unpolished Ti due to increase in nucleation of Fe. Also, it was founded that the polished Ti can reduced deposition overpotential.