• Title/Summary/Keyword: Ti-Cr alloy

Search Result 187, Processing Time 0.027 seconds

Synthesis and Microstructure of Fe-Base Superalloy Powders with Y-Oxide Dispersion by High Energy Ball Milling (고에너지 볼 밀링을 이용한 Y-산화물 분산 Fe-기초내열합금 분말의 합성 및 미세조직 특성)

  • Yim, Da-Mi;Park, Jong Kwan;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.386-390
    • /
    • 2015
  • Fe-base superalloy powders with $Y_2O_3$ dispersion were prepared by high energy ball milling, followed by spark plasma sintering for consolidation. High-purity elemental powders with different Fe powder sizes of 24 and 50 mm were used for the preparation of $Fe-20Cr-4.5Al-0.5Ti-O.5Y_2O_3$ powder mixtures (wt%). The milling process of the powders was carried out in a horizontal rotary ball mill using a stainless steel vial and balls. The milling times of 1 to 5 h by constant operation (350 rpm, ball-to-powder ratio of 30:1 in weight) or cycle operation (1300 rpm for 4 min and 900 rpm for 1 min, 15:1) were applied. Microstructural observation revealed that the crystalline size of Fe decreased with an increase in milling time by cyclic operation and was about 15 nm after 3 h, forming a FeCr alloy phase. The cyclic operation had an advantage over constant milling in that a smaller-agglomerated structure was obtained. The milled powders were sintered at $1100^{\circ}C$ for 30 min in vacuum. With an increase in milling time, the sintered specimen showed a more homogeneous microstructure. In addition, a homogenous distribution of Y-compound particles in the grain boundary was confirmed by EDX analysis.

Thermodynamics of Hydrogen-Induced Phase Separation on Pd-Co Alloys (수소유기에 따른 Pd-Co합금들의 상 분리 현상에 대한 열역학적 고찰)

  • Song, D.M.;Park, C.N.;Choi, J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.3
    • /
    • pp.244-252
    • /
    • 2005
  • It is very interesting and important in the academic point of view and in practical use the hydrogen-induced phase separation(HIPS) which appears during hydrogen heat treatment. Since hydrogen can be removed very fast by pumping it out the hydrogen-induced new lattice phase which can not be obtained without hydrogen can be preserved as meta-stable state. In this study it has been investigated whether the HIPS appear in Pd-Al, Pd-Co, Pd-Cr, Pd-Ti, Pd-V and Pd-Zr alloys and discussed thermodynamic representation of the HIPS. The Pd alloys were arc-melted under argon atmosphere and remelted 4 or 5 times for homogenization. The alloys were annealed at 600$^{\circ}C$ under vacuum for 24 hrs and then subjected to pressure-composition isotherm measurements at 100$^{\circ}C$. The hydrogen heat treatment(HHT) of samples was carried out at 600$^{\circ}C$ under hydrogen pressure of 70 bar for 6 days and PC isotherms at 100$^{\circ}C$ were measured. By comparing the PC isotherms measured before and after HHT, occurrence of phase separation was determined. The experimental results showed that the HIPS appeared only in Pd-0.05Co alloy. For Pd-Co alloys with various composition the PC isotherms were measured. By adopting Park-Flanagan model for ternary thermodynamics the Gibbs free energy change for Pd-Co-H solid solution was calculated and subsequently with this the HIPS in Pd-Co alloy was explained fairly.

Machine Learning-based Data Analysis for Designing High-strength Nb-based Superalloys (고강도 Nb기 초내열 합금 설계를 위한 기계학습 기반 데이터 분석)

  • Eunho Ma;Suwon Park;Hyunjoo Choi;Byoungchul Hwang;Jongmin Byun
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.217-222
    • /
    • 2023
  • Machine learning-based data analysis approaches have been employed to overcome the limitations in accurately analyzing data and to predict the results of the design of Nb-based superalloys. In this study, a database containing the composition of the alloying elements and their room-temperature tensile strengths was prepared based on a previous study. After computing the correlation between the tensile strength at room temperature and the composition, a material science analysis was conducted on the elements with high correlation coefficients. These alloying elements were found to have a significant effect on the variation in the tensile strength of Nb-based alloys at room temperature. Through this process, a model was derived to predict the properties using four machine learning algorithms. The Bayesian ridge regression algorithm proved to be the optimal model when Y, Sc, W, Cr, Mo, Sn, and Ti were used as input features. This study demonstrates the successful application of machine learning techniques to effectively analyze data and predict outcomes, thereby providing valuable insights into the design of Nb-based superalloys.

Study on the control technique for the heat transportation system using metal hydride (수소저장합금을 이용한 열수송시스템 제어기술 연구)

  • Sim, K.S.;Kim, J.W.;Kim, J.D.;Myung, K.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • The heat transportation from a complex of industry to a rural area needs more efficient method because the distance between them is usually more than 10km. Conventional heat transportation using steam or hot water via pipe line has limits in transportation distance (about 3~5 km) because of the heat loss and frictional loss in the pipe line. Metal hydride can absorb or discharge hydrogen through exothermic or endothermic reaction. After releasing hydrogen from metal hydride by means of the waste heat from industry, we can transport this hydrogen to urban area via pipe line. In urban areas, other metal alloy reacts with this hydrogen to form metal hydride and produces heat for heating. Cool heat is also obtained if it is possible to use metal hydride with low reaction temperature. Therefore, metal hydride can be used as a media for transportation and storage of heat. $MmNi_{4.5}Al_{0.5}Zr_{0.003}$, $LaNi_5$, $Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$, $MmNi_{4.7}Al_{0.1}Fe_{0.1}V_{0.1}$ alloys were selected for this purpose and the properties of those metal hydrides were discussed. The design and control techniques were proposed and discussed for this heat transportation system using metal hydride.

  • PDF

Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds (Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도)

  • Park, Tae-Jun;Kong, Jong-Pan;Na, Hye-Sung;Kang, Chung-Yun;Uhm, Sang-Ho;Kim, Jeong-Kil;Woo, In-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.

Effect of Solution Annealing Heat Treatment on the Localized Corrosion Resistance of Inconel 718 (Inconel 718의 국부 부식 저항성에 미치는 용체화 열처리의 영향)

  • Yoonhwa Lee;Jun-Seob Lee;Soon Il Kwon;Jungho Shin;Je-hyun Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.359-367
    • /
    • 2023
  • The localized corrosion resistance of the Ni-based Inconel 718 alloy after solution heat treatment was evaluated using electrochemical techniques in a solution of 25 wt% NaCl and 0.5 wt% acetic acid. Solution heat treatment at 1050 ℃ for 2.5 hours resulted in an increased average grain diameter. Both Ti carbides (10 ㎛ diameter) and Nb-Mo carbides (1 - 9 ㎛ diameter) were distributed throughout the material. Despite heat treatment, the shape and composition of these carbides remained consistent. An increase in solution temperature led to a decrease in pitting potential value. However, the pitting potential value of solution heat-treated Inconel 718 was consistently higher than that of as-received Inconel 718 at all tested temperatures. Localized corrosion initiation occurred at 0.4 VSSE in a temperature environment of 80 ℃ for both as-received and solution heat-treated Inconel 718 alloys. X-ray photoelectron spectroscopic analysis indicated that the composition of the passive film formed on specimen surfaces remained largely unchanged after solution heat treatment, with O1s, Cr2p3/2, Fe2p3/2, and Ni2p3/2 present. The difference in localized corrosion resistance between as-received and solution heat-treated Inconel 718 alloys was attributable to microstructural changes induced by the heat treatment process.

Thermal Stability of $\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) Amorphous Alloys ($\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) 비정질합금의 열적안정성)

  • Guk, Jin-Seon;Jeon, U-Yong;Jin, Yeong-Cheol;Kim, Sang-Hyeop
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.218-223
    • /
    • 1997
  • At the aim of finding a Fehased amorphous alloy with a wide supercooled liquid region (${\Delta}T_{x}=T_{x}-T_{g}$) before crystallization, the changes in glass transition temperatudfI$T_{g}$ and crystallization temperature ($T_{x}$) by the dissolution of additional M elements were examined for the $Fe_{80}P_{10}C_{6}B_{4}$(x~6at%. M= transition metals) amorphous alloys. The ${\Delta}T_{x}$ value is 27K for the Fe,,,P,,,C,,R, alloy and increases to 40K for the addition of M=4at%Hf, 4at%Ta or 4at%Mo. The increase in ${\Delta}T_{x}$ is due to the increase of $T_{x}$ exceeding the degree in the increase in $T_{g}$. The $T_{g}$ and $T_{x}$ increase with decreasing electron concentration (e/a) from about 7 38 to 7.05. The decrease of e/a also implies the increase in the attractive bonding state between the M elements and other constitutent elements. It is therefore said that $T_{g}$ and $T_{x}$ increase kith increasing attractive bonding force.

  • PDF