• Title/Summary/Keyword: Ti-Al-Si-N

Search Result 208, Processing Time 0.027 seconds

Petrochemical Study on the Cretaceous Volcanic Rocks in Kyeongsang Basin, Korea: Possibility of Magma Heterogeneity (경상분지 백악기 화산암류에 대한 암석화학적 고찰: 이원성 마그마의 가능성)

  • Sung, Jong Gyu;Kim, Jin Seop;Lee, Joon Dong
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.249-264
    • /
    • 1998
  • The Creataceous volcanic rocks distributed in the southeastern part (Kyeongsang basin) of Korea peninsula are composed of basalt, basaltic andesite, andesite, dacite and rhyolite. The variation of major elements show that contents of MgO, CaO, $FeO^T$, $Al_2O_3$, $TiO_2$ and $P_2O_5$ decrease with increasing of $SiO_2$, but $K_2O$ contents are increased slightly, $Na_2O$ widely dispersed. We can show slightly inflection point and low frequency of dacites in range between 63-65 wt.% $SiO_2$, while continuous trend exit in variation diagram. Variation trends in Harker diagrams for the major, minor, trace and REEs suggest that the BAV (basaltic to andesitic volcanics) and DRV (dacitic to rhyolitic volcanics) are not related to a simple crystal fractionation process. In the regime of under 65 wt. % in silica content, fractionation of olivine and clinopyroxene is predominant, while that of plagioclase happens strongly higher than 65 wt.% (e.g., $SiO_2$, vs. Eu and Sr, MgO vs. $Al_2O_3$ and CaO). The latter means low-pressure fractional crystallization for DRV. On the discriminant diagram, DRV are located in more mature environment than BAV. The $(Ce/Sm)_N$ vs. CeN digram shows that these two classes cannot be related to crystal fractionation. If they had been produced by fractionation, although they plotted in a slightly elongate cluster along the same horizontal trend, DRV should lie to the right of these primitive compositions. These diagrams clearly rule out a simple fractionation throughout from BAV to DRV. BAV had been influenced greatly subductiong slab as shown by K/Yb vs. Ta/Yb. We suggest that BAV primitive magma generated higher degree of partial melting than DRV primitive magma. LILE (K, Ba, $Rb{\pm}Th$) enriched characteristics as shown in BAV are inherited from subducting slab fluids and/or higher degree of partial melting of mantle material. However, lower degree of partial melting of mantle relative to BA V and contamination at high-level magma reservoir caused LILE enrichment to DRV.

  • PDF

Crystallization Kinetics by Thermal Analysis (DTA) on Starting Glass Compositions for PDP(Plasma Display Panel) Rib (열분석에 의한 PDP 격벽용 출발유리조성의 결정화 특성 연구)

  • Jeon, Young-Wook;Cha, Jae-Min;Kim, Dae-Whan;Lee, Byung-Chul;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.721-727
    • /
    • 2002
  • In order to overcome trade-off among compositions, process and properties of the glasses with high PbO-base composition for PDP Rib, we studied glass crystallization and crystallization kinetics by Differential Thermal Analysis(DTA). Glass powder was obtained through melting/cooling/grinding, with 3 wt%TiO2 addition for the crystal nucleation and growth in $62PbO-19B_2O_3-10SiO_2-9(Al_2O_3-K_2O-BaO-ZnO)$(in wt%) composition glass. This powder was heat-treated for 1 to 10 h at $445^{\circ}C$ for nucleation. DTA measurements were performed to obtain the crystallization peak with $5∼25^{\circ}C/min$ heating rates. DTA crystallization peak temperature increased with increasing the heating rate and decreased with increasing the heating time. Because the Avrami parameter (n) was approximately 1, the surface crystallization occurred. The maximum nucleation time was 2 h.

Fabrication of Atmospheric Coplanar Dielectric Barrier Discharge and Analysis of its Driving Characteristics (평면형 대기압 유전장벽방전장치의 제작 및 동작특성분석)

  • Lee, Ki-Yung;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.80-84
    • /
    • 2014
  • The discharge characteristics of Surface Dielectric Barrier Discharge (SDBD) reactor are investigated to find optimal driving condition with adjusting various parameter. When the high voltage with sine wave form is applied to SDBD source, successive pulsed current waveforms are observed owing to multiple ignitions through the long discharge channel and wall charge accumulation on the dielectric surface. The discharge voltage, total charge between dielectrics, mean energy and power are calculated from measured current and voltage according to electrode gap and dielectric thickness. Discharge mode transition from filamentary to diffusive glow is observed for narrow gap and high applied voltage case. However, when the diffusive discharge is occurred with high applied voltage, the actual firing voltage is always lower than that with low driving voltage. The $Si_3N_4$, $MgF_2$, $Al_2O_3$ and $TiO_2$ are considered for dielectric protection and high secondary electron emission coefficient. SDBD with $MgF_2$ shows the lowest breakdown voltage. $MgF_2$ thin film is proposed as a protection layer for low voltage atmospheric dielectric barrier discharge devices.

XRF Analysis and Polarizing Microscopic Study of the Lava Cave Formation, Korea, Japan and Russia (한국, 일본, 러시아 용암동굴 형성층의 형광X선 분석과 편광현미경적 연구)

  • Sawa, Isao;Furuyama, Katsuhiko;Ohashi, Tsuyoshi;Kim, Chang-Sik;Kashima, Naruhiko
    • Journal of the Speleological Society of Korea
    • /
    • no.74
    • /
    • pp.23-31
    • /
    • 2006
  • (1) Kaeusetgul Cave in Kimnyong-Ri, Jeju-Do, Korea. Kaeuset-gul Cave (KC) is situated in NNE area of the Manjang-gul cave (125m a.s.l.). Kaeuset-gul Cave lies at $126^{\circ}45'22"$ E in longitude and $33^{\circ}33'09"$ N in latitude. The coast belong Kimnyeong-Ri, Kujwa-eup, Jeju-Do. Altitude of the cave-entrance is 10m and length of the cave is 90m. Lava hand-specimens of KC are studied by X-ray fluorescence analysis (XRF). Average major chemical components of specimens from KC is as follows (wt.%); $SiO_2=47.03$, $TiO_2=3.16$, $Al_2O_3=18.41$, FeO*=13.53, MnO=0.14, MgO=5.05, CaO=8.66, $Na_2O=2.81$, $K_2O=0.67$, $P_2O_5=0.55$ in KC. Polarizing microscopic studyindicates that these specimens are described of alkali-basalt. (2) Tachibori Fuketsu (Cave) in Shizuoka Prefecture, Fuji Volcano, Japan Tachibori Fuketsu lies attoward the south in skirt of the Fuji volcano, $138^{\circ}42'04"$ east longitude and $35^{\circ}18'00"$ north latitude. The location of cave entrance is 2745, Awakura, Fujinomiya-shi, Shizuoka Prefecture. The above sea level and length of Tachibori Fuketsu are 1,170m and 82m. Average major chemical components of specimens from cave areas follows (Total 100 wt.%) ; ($SiO_2$=50.52, $TiO_2$=1.69, $Al_2O_3$=15.47, FeO*=13.13, MnO=0.20, MgO=5.97, CaO=9.17, $Na_2O$=2.52, $K_2O$=0.94 and $P_2O_5=0.40).$ Polarizing microscopic study indicates that these specimens may belong to tholeiite-basalt series. According to polarizing microscopic study, Au (Augite), P1 (Plagioclase), and O1 (Olivine) are contained as phenocryst minerals. (3) Gorely Cave in Kamchatka Peninsula, Russia Gorely caldera is located at the southeastern part of Kamchatka Peninsula, about 75km southwest of Petropavlovsk-Kamchatskiy.. Gorely lava caves are situated in NHE area of Mt. Gorely volcano (1829m a.s.1.). One of lava cave (Go-9612=K-1) lies at $158^{\circ}00'22"$ east longitude and $52^{\circ}36'18"$ north latitude. The elevation of cave entrance is about 990m a.s.1. and the main cave extends in the NNW direction for about 50m by 15m wide and 5m in depth. The cave of K-3is near the K-1 cave. "@Lava hand-specimens K-1 and K-3 caves are studied by X-ray fluorescence analysis and polarizing microscopic observation. Average major chemical components of specimens from these caves are as follows (wt.%) ;($SiO_2$=55.12, $TiO_2$=1.25, $Al_2O_3$=16.07, T-FeO* =9.41, MnO=0.16, MgO=5.01, CaO=7.21, $Na_2O$=3.39, $K_2O$=1.92, $P_2O_5$=0.45) and these values indicate that the Gorely basaltic andesite belong to high alumina basalt. Polarizing microscopic study indicates that these specimens are described of Augite andesite.

Source Identification of Ambient PM-10 Using the PMF Model (PMF 모델을 이용한 대기 중 PM-10 오염원의 확인)

  • 황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.701-717
    • /
    • 2003
  • The objective of this study was to extensively estimate the air quality trends of the study area by surveying con-centration trends in months or seasons, after analyzing the mass concentration of PM-10 samples and the inorganic lements, ion, and total carbon in PM-10. Also, the study introduced to apply the PMF (Positive Matrix Factoriza-tion) model that is useful when absence of the source profile. Thus the model was thought to be suitable in Korea that often has few information about pollution sources. After obtaining results from the PMF modeling, the existing sources at the study area were qualitatively identified The PM-10 particles collected on quartz fiber filters by a PM-10 high-vol air sampler for 3 years (Mar. 1999∼Dec.2001) in Kyung Hee University. The 25 chemical species (Al, Mn, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, Ce, Pb, Si, N $a^{#}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$, C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$, TC) were analyzed by ICP-AES, IC, and EA after executing proper pre - treatments of each sample filter. The PMF model was intensively applied to estimate the quantitative contribution of air pollution sources based on the chemical information (128 samples and 25 chemical species). Through a case study of the PMF modeling for the PM-10 aerosols. the total of 11 factors were determined. The multiple linear regression analysis between the observed PM-10 mass concentration and the estimated G matrix had been performed following the FPEAK test. Finally the regression analysis provided source profiles (scaled F matrix). So, 11 sources were qualitatively identified, such as secondary aerosol related source, soil related source, waste incineration source, field burning source, fossil fuel combustion source, industry related source, motor vehicle source, oil/coal combustion source, non-ferrous metal source, and aged sea- salt source, respectively.ively.y.

Dehydrocoupling of Bis(silyl)alkylbenzenes to Network Polysilanes, Catalyzed by Group 4 Metallocene Combination

  • Kim, Myoung-Hee;Lee, Jun;Moo, Soo-Yong;Kim, Jong-Hyun;Ko, Young Chun;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Bis(silyl)alkylbenzenes such as bis(1-sila-sec-butyl)benzene (1) and 2-phenyl-1,3-disilapropane (2) were synthesized in high yields by the reduction of the corresponding chlorosilanes with $LiAlH_4$ in diethyl ether. The dehydrocoupling of 1 and 2 was performed using group IV metallocene complexes generated in situ from $Cp_2MCl_2$/Red-Al and $Cp_2MCl_2$/n-BuLi (M = Ti, Hf), producing two phases of polymers. The TGA residue yields of the insoluble polymers were in the range of 64-74%. The molecular weights of the soluble polymers produced ranged from 700 to 5000 ($M_w$ vs polystyrene using GPC) and from 500 to 900 ($M_w$ vs polystyrene using GPC). The dehydropolymerization of 1 and 2 seemed to initially produce a low-molecular-weight polymer, which then underwent an extensive cross-linking reaction of backbone Si-H bonds, leading to an insoluble network polymer.

Geochemistry and Petrogenesis of Pan-african Granitoids in Kaiama, North Central, Nigeria

  • Aliyu Ohiani Umaru;Olugbenga Okunlola;Umaru Adamu Danbatta;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.259-275
    • /
    • 2023
  • Pan African granitoids of Kaiama is comprised of K-feldspar rich granites, porphyritic granites, and granitic gneiss that are intruded by quartz veins and aplitic veins and dykes which trend NE-SW. In order to establish the geochemical signatures, petrogenesis, and tectonic settings of the lithological units, petrological, petrographical, and geochemical studies was carried out. Petrographic analysis reveals that the granitoids are dominantly composed of quartz, plagioclase feldspar, biotite, and k-feldspar with occasional muscovites, sericite, and opaque minerals that constitute very low proportion. Major, trace, and rare earth elements geochemical data reveal that the rocks have moderate to high silica (SiO2=63-79.7%) and alumina (Al2O3=11.85-16.15) contents that correlate with the abundance of quartz, feldspars, and biotite. The rocks are calc-alkaline, peraluminous (ASI=1.0-<1.2), and S-type granitoids sourced by melting of pre-existing metasedimentary or sedimentary rocks containing Al, Na, and K oxides. They plot dominantly in the WPG and VAG fields suggesting emplacement in a post-collisional tectonic setting. On a multi-element variation diagram, the granitoids show depletion in Ba, K, P, Rb, and Ti while enrichment was observed for Th, U, Nd, Pb and Sm. Their rare-earth elements pattern is characterized by moderate fractionation ((La/Yb)N=0.52-38.24) and pronounced negative Eu-anomaly (Eu/Eu*=0.02-1.22) that points to the preservation of plagioclase from the source magma. Generally, the geochemical features of the granitoids show that they were derived by the partial melting of crustal rocks with some input from greywacke and pelitic materials in a typical post-collisional tectonic setting.

Quantitative Analysis of the Volcanic Cave Rocks in Mt. Peakdu Group and Cheju Island (백두산과 제주화산도에 있는 용암동굴의 X선 분석)

  • 김경훈
    • Journal of the Speleological Society of Korea
    • /
    • v.45 no.46
    • /
    • pp.9-31
    • /
    • 1996
  • The Mt. Peakdu is situated in north of the main peninsula, commanding geographically coordinated between longitude W($127^{\circ}$ 15' - $128^{\circ}$ 00') to E($128^{\circ}$ 15'- $129^{\circ}$ 00'), between latitude from S($41^{\circ}$ 15'- $42^{\circ}$ 00') to N($42^{\circ}$ 10'- $42^{\circ}$ 40'). The Manjyang-Gul in Cheju volcanic island is situated in the south of the main peninsula, commanding the Korean Strait, geographically coordinated longitude N($33^{\circ}$ 32' 26") and E($126^{\circ}$ 46' 48"). The quantitative analysis using XRF of volcanic rock samples for the north of Lu- Ming- Feng in Mt. Peakdu Group and the Manjang-Gul in Cheju island was Performed. The major chemical components by group analysis are as follows; Peakdu-Mt. Cheju Peakdu-Mt. Cheju (1) $Na_2O$(3.29Wt% and 3.27Wt%) (2) MgO (3.95Wt% and 6.l5Wt%) (3) $Al_2O_3$((17.64Wt% and 15.l7Wt%) (4) $SiO_2$((50.62Wt% and 50.99Wt%) (5) $P_2O_5$ (0.36Wt% and 0.30Wt%) (6) $K_2O$ (1.37Wt% and 1.04Wt%) (7) CaO (8.56Wt% and 8.06Wt%) (8) $TiO_2$ (2.37Wt% and 2.l5Wt%) (9) MnO (0.llWt% and 0.l6Wt%) (10) $Fe_2O_3$(9.l2Wt% and 12.56Wt%) The Group analysis data were compared in the relation within the age of formation for $0.16{\pm}0.08Ma$ in Mt. Peakdu Group, and $0.42{\pm}42Ma$ or $0.42{\pm}42Ma$ in Cheju island for K-Ar age. The crystal structure are mixed crystal of monoclinic, hexagonal and triclinic system in Mt. Peakdu Group and mixed structure of triclinic and cubic system in Cheju volcanic island.ic island.

  • PDF

백두산 화산군 환경과 동굴 암석의 년대측정 및 성분분석

  • 김경훈
    • Journal of the Speleological Society of Korea
    • /
    • v.34 no.35
    • /
    • pp.32-42
    • /
    • 1993
  • The Paektu-san mountains are geographically situated in the Korea strait to the north of the main peninsula, coordinated between the longitudes of W(127$^{\circ}$15'~128$^{\circ}$00')and E(128$^{\circ}$15'~129$^{\circ}$00'), and between the latitudes of S(41$^{\circ}$15'~42$^{\circ}$00') and N(42$^{\circ}$10'~42$^{\circ}$40'). The volcanic group of the Paektu-san mountains can be devided into 2 main kinds of volcanos by the method investigation, The ashes are mainly made of tremolite, trachte, basalt and pumice, or, a little quartz, labradorite and volcanic glass. These sorts, ratios and forms of the rocks are respectively similar. The Haeven lake is surrounded by 19 peaks. The central volcanic cone is a secant cone in shape, with an altitude of the 1800m to 2749,2m (Chang-kun-bong), an average diameter of 10km, and a shape of an ellipse seen high from the plane. They say there were several eruptions in 1668, 1700 and 1702 A. D. The crystal structure of the rock sample collected at the cave of Mt. Paektu-san is monoclinic. The quantitative analysis of the rock samples in the cave is done by using XRF this time. The chemical compositions by XRF fundamamental parameter analysis is : SiO$_2$: 50.72Wt%, TiO = 2.422Wt%, $Al_2$O$_3$= 17.65Wt%, Fe$_2$O$_3$= 9.371Wt%, CaO = 8.711Wt%, MgO = 4.l19Wt%, MnO = 0.l15Wt%, $K_2$O = 1.369Wt%, Na$_2$O : 3.028Wt% and P$_2$O$_{5}$ = 0.365Wt%. The K-Ar age of the rock sample is also determined to be 0.16Ma. This paper describes some problems experienced in dating young volcanic rocks, and then discusses chemical compositions, X-ray fluorescence analyses and the age of the formation of a lava tunnel such as in Mt. Paektu-san.n.

  • PDF

Geochemical Characteristics of Soils and Sediments at the Narim Mine Drainage, Korea: Dispersion, Enrichment and Origin of Heavy Metals (나림광산 수계의 토양과 퇴적물에 관한 지구화학적 특성: 중금속 원소의 분산, 부화 및 기원)

  • Lee, Chan Hee;Lee, Hyun Koo;Lee, Jong Chang
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.297-310
    • /
    • 1998
  • Geochemical characteristics of environmental toxic elements at the Narim mine area were investigated on the basis of major, minor, rare earth element geochemistry and mineralogy. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in soils and sediments range from 11.57 to 22.21 and from 1.86 to 3.93, and are partly negative and positive correlation against $SiO_2/Al_2O_3$ (3.41 to 4.78), respectively. These suggested that sediment source of host granitic gneiss could be due to rocks of high grade metamorphism originated by sedimentary rocks. Characteristics of some trace and rare earth elements of V/Ni (0.33 to 1.95), Ni/Co (2.00 to 6.50), Zr/Hf (11.27 to 53.10), La/Ce (0.44 to 0.55), Th/Yb (4.07 to 7.14), La/Th (2.35 to 3.93), $La_N/Yb_N$ (6.58 to 13.67), Co/Th (0.63 to 2.68), La/Sc (3.29 to 5.94) and Sc/Th (0.49 to 1.00) are revealed a narrow range and homogeneous compositions may be explained by simple source lithology. Major elements in all samples are enriched $Al_2O_3$, MgO, $TiO_2$ and LOI, especially $Fe_2O_3$ (mean=7.36 wt.%) in sediments than the composition of host granitic gneiss. The average enrichment indices of major and rare earth elements from the mining drainage are 2.05 and 2.91 of the sediments and are 2.02 and 2.60 of the soils, normalizing by composition of host granitic gneiss, respectively. Average composition (ppm) of minor and/or environmental toxic elements in sediments and soils are Ag=14 and 1, As=199 and 14, Cd=22 and 1, Cu=215 and 42, Pb=1770 and 65, Sb=18 and 3, Zn=3333 and 170, respectively, and extremely high concentrations are found in the subsurface sediments near the ore dump. Environmental toxic elements were strongly enriched in all samples, especially As, Cd, Cu, Pb, Sb and Zn. The level of enrichment was very severe in mining drainage sediments, while it was not so great in the soils. Based on the EPA value, enrichment index of toxic elements is 8.63 of mining drainage sediments and 0.54 of soils on the mining drainage. Mineral composition of soils and sediments near the mining area were partly variable being composed of quartz, mica, feldspar, amphibole, chlorite and clay minerals. From the gravity separated mineralogy, soils and sediments are composed of some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, goethite and various hydroxide minerals.

  • PDF