• Title/Summary/Keyword: Ti thickness

Search Result 1,121, Processing Time 0.027 seconds

Preparation and Characteristics of $(Ba_{1-x}Sr_x)TiO_3$ Thin Films by the Sol-gel Process (졸-겔법을 이용한 $(Ba_{1-x}Sr_x)TiO_3$ 박막의 제조 및 특성)

  • 황규석;김병훈
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.516-524
    • /
    • 1995
  • In this study, to prepare the dielectric (Ba, Sr)TiO3 thin films by the sol-gel process, Titaminum (IV) sio-propoxide (Ti[OCH(CH3)2]4), Ba and Sr acetate were used for sol and thin films were prepared by dip-coating process. Stability of sol decreased with the increase of Sr, and thickness of thin films were obtained 0.13~0.17${\mu}{\textrm}{m}$ by 1 coating cycle. Transmittance of amorphous thin films heated at 500 and 55$0^{\circ}C$ was very good, and crystallization tendency of thin films according to heat-treatment temperature and crystallization characteristics of thin films heated at 11$0^{\circ}C$ for 3 hrs were analysed. As a result, good perovskite structure was obtained higher than 100$0^{\circ}C$, and tetragonality of thin film was decreased but pyrochlore was formed with increasing Sr. In case of addition to substitute 0.4mol% Sr for Ba, dielectric constant was 288 and loss factor (tan $\delta$) was 0.04.

  • PDF

Template-directed Atomic Layer Deposition-grown $TiO_2$ Nanotubular Photoanode-based Dye-sensitized Solar Cells

  • Yu, Hyeon-Jun;Panda, Sovan Kumar;Kim, Hyeon-Cheol;Kim, Myeong-Jun;Yang, Yun-Jeong;Lee, Seon-Hui;Sin, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.239.1-239.1
    • /
    • 2011
  • Dye sensitized solar cells (DSC) are promising devices for inexpensive, nontoxic, transparent, and large-scale solar energy conversion. Generally thick $TiO_2$ nanoporous films act as efficient photoanodes with their large surface area for absorbing light. However, electron transport through nanoparticle networks causes the slowdown and the loss of electron transport because of a number of interparticle boundaries inside the conduction path. We have studied DSCs with precisely dimension-controlled $TiO_2$ nanotubes array as photoanode. $TiO_2$ nanotubes array is prepared by template-directed fabrication method with atomic layer deposition. Well-ordered nanotubes array provides not only large surface area for light absorbing but also direct pathway for electrons with minimalized grain boundaries. Large enlongated anatase grains in the nanotubes could enhance the conductivity of electrons, but also suppress the recombination with holes through defect sites during diffusion into the electrode. To study the effect of grain boundaries, we fabricated two kinds of nanotubes which have different grain sizes by controlling deposition conditions. And we studied electron conduction through two kinds of nanotubes with different grain structures. The solar cell performance was studied as a function of thickness and grain structures. And overall solar-to-electric energy conversion efficiencies of up to 7% were obtained.

  • PDF

Thermal shock behaviors of TiN coatings on Inconel 617 and Silicon wafer substrates with finite element analysis method

  • Lee, Ki-Seuk;Jeon, Seol;Cho, Hyun;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.2
    • /
    • pp.67-73
    • /
    • 2016
  • The degradation behaviors of TiN coating layers under thermo-mechanical stress were investigated in terms of comparison of finite element analysis (FEA) and experimental data. The coating specimen was designed to quarter cylinder model, and the pulsed laser ablation was assumed as heat flux condition. The FEA results showed that heat accumulation at the center of the laser-ablated spot occurred and principle stress was concentrated at the lower region of the coating layer. The microstructural observation revealed that surface melting and decrease of the coating thickness occurred in the TiN/Inconel 617 and the interfacial cracks formed in the TiN/Si. The delamination was caused by the mechanical stress from the center to the outside of the ablated spot as the FEA results expected. It was considered that the improvement of the thermal shock resistance was attributed to higher thermal conductivity of Si wafer than that of Inconel 617.

CdSe/$TiO_2$ electrode of photoelectrochemical[PEC] cell for hydrogen production from water using solar energy (태양광과 물로부터 수소생산을 위한 광전기화학전지의 CdSe/$TiO_2$ 전극)

  • Lee, Eun-Ho;Jung, Kwang-Deog;Joo, Oh-Shim
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.130-135
    • /
    • 2005
  • Cadmium selenide is one of the group IIb-VI compounds, which is the promising semiconductor material due to its wide range of technological applications in optoelectronic devices such as photoelectrochemical cells, solid state solar cells, thin film photoconductors etc. CdSe has optical band gap of 1.7-1.8eV and proper conduction band edge for water splitting. CdSe films are coated with small thickness(20-50nm) nanocrystalline $TiO_2$ film by electrodeposition or chemical bath deposition methods and PEC properties of CdSe and CdSe/$TiO_2$ sandwich structure are studied. The photoactivity of CdSe and CdSe/$TiO_2$ films deposited on titanium substrate is studied in aqueous electrolyte of 1M NaOH solution. Photocurrent and photovoltage obtained were of the order of 2-4 mA/$cm^2$ and 0.5V, respectively, under the intensity of illumination of 100 mW/$cm^2$.

The Structural Properties of the PZT/BST Heterolayered Thin Films with $Ar/O_2$ Ratio ($Ar/O_2$ 비에 따른 PZT/BST 이종층 박막의 구조적 특성)

  • Lee, Yoe-Bok;Nam, Sung-Pill;Lee, Sang-Chul;Kim, Ji-Heon;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.607-610
    • /
    • 2004
  • The Pb $(Zr_{0.52}Ti_{0.48})O_3/(Ba_{0.6}Sr_{0.4}TiO_3$ [PZT(52/48)/BST(60/40)] heterolayered thin films were fabricated on the Pt/Ti/$SiO_2$/Si by RF sputtering method. The structural properties of the PZT(52/48)/BST(60/40) heterolayered thin films were investigated with Ar/$O_2$ ratio condition. All the PZT(52/48)/BST(60/40) heterolayered thin films had shown the PZT(111), (200) and BST(200) Peaks of the tetragonal structure. Increasing the Ar/$O_2$ ratio, the average roughness was increased. The thickness ratio of the to the PZT and BST thin film was 1:2. In the case of the PZT(52/48)/BST(60/40) heterolayered thin films with Ar/$O_2$ ratio of 80/20, the average roughness was 3.4 [nm].

  • PDF

Effects of Process Parameters on the Coating Properties of APS TiO2 ioceramic Coatings

  • Kim, Hak-Kwak;Jang, Ju-Woong;Kim, Byoung-Soo;Moon, Ji-Woong;Lee, Deuk-Yong;Lee, Chang-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.123-127
    • /
    • 2003
  • The effects of process parameters on coating formation and coating properties were investigated using a fused and crushed Ti $O_2$powder by the Taguchi method and L$_{9}$(3$^4$) orthogonal array. The Taguchi analysis was conducted through the results of the coating properties affected strongly by plasma spraying parameters and Ti $O_2$powder was sprayed on Ti-6Al-4V alloy substrate. The coating properties were characterized by thickness, microhardness, porosity and surface roughness using optical microscopy, image analyzer and surface roughness tester respectively. An observed optimum condition of plasma spraying process could be found for potential use as a bioceramic coating.

Evaluation of Wear Chracteristics for $Al_2O_3-40%TiO_2$Sprayed on Casted Aluminum Alloy (주조용 알루미늄 합금의 $Al_2O_3-40%TiO_2$ 용사층에 대한 마멸특성 평가)

  • 채영훈;김석삼
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • The wear behavior of $Al_2$O$_3$-40%TiO$_2$deposited on casted aluminum alloy (ASTM A356) by APS (Air Plasma Spray) against SiC ball has been investigated in this work. Wear tests were carried out at room temperature. The friction coefficient of $Al_2$O$_3$-40%TiO$_2$coating is lower than that of pure $Al_2$O$_3$coating(APS). $Al_2$O$_3$-40%TiO$_2$coating indicated the existence of the optimal coating thickness. It is found that voids and pores of coating surface resulted in the generation of cracks, and the cohesive of splats and the porosity of surface play a role in wear characteristics. It is suggested that the mismatch of thermal expansion of substrate and coating play an important role in wear performance. Tension and compression under thermo-mechanical stress may be occurred by the mismatch between thermal expansion of substrate and coating. The crack propagation above interface is observed in SEM.

Effect of Surface Treatment of Ti on Oxidative Thin Film of Electronic Materials (전자재료 산화박막에 대한 Ti표면처리 효과)

  • Lee, Won-Kyu;Cho, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.3
    • /
    • pp.270-272
    • /
    • 2005
  • The behavior of surface oxidation on cobalt silicide layer was investigated under rapid thermal oxidation (RTO) conditions. The cobalt silicide layer was prepared on p-type silicon substrates. We used Ti thin film as a capping layer in order to measure the degree of oxidation of the layer. Oxide grew faster on the cobalt silicide prepared with the Ti capping layer to reach ca $500{\AA}$ at $700^{\circ}C$ in thickness. The oxide film kept growing under $550^{\circ}C\~700^{\circ}C$ of the RTO condition, resulting in a saturated state above $500{\AA}$.

  • PDF

Preparing and Ferroelectric Properties of the Pb($Zr_{0.52}$$Ti_{0.48}$)$O_3$ Thin Film by Sol-Gel Method. (Sol-Gel법에 의한 Pb($Zr_{0.52}$$Ti_{0.48}$)$O_3$박막의 제조 및 강유전 특성)

  • 이영준;정장호;이성갑;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.168-170
    • /
    • 1994
  • Pb($Zr_{0.52}$$Ti_{0.48}$)$O_3$ ceramic thin films were fabricated from an alkoxide-based solution by Sol-Gel method. Pb($Zr_{0.52}$$Ti_{0.48}$)$O_3$ ceramic thin films were formed by spin coating method on Pt/$SiO_2$Si substrate at 4000ppm for 30 seconds. The coating process was repeated 6 times and then heat-treated at temperature between 500∼800[$^{\circ}C$] for 1 hour. The final thickness of the thin films were about 4800[A]. The ferroelectric perovskite phases precipitated under the heat-treated at 700[$^{\circ}C$] for 1 hour. Pb($Zr_{0.52}$$Ti_{0.48}$)$O_3$ thin films heat-treated at 700[$^{\circ}C$] for 1 hour showed good dielectric and ferroclectric properties.

Thin Films for Environmental Application and Energy Devices

  • Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.91-91
    • /
    • 2012
  • We aim in synthesizing various functional thin films thinner than ~ 10 nm for environmental applications and photovoltaic devices. Atomic layer deposition is used for synthesizing inorganic thin films with a precise control of the film thickness. Several examples about application of our thin films for removing volatile organic compounds (VOC) will be highlighted, which are summarized in the below. 1) $TiO_2$ thin films prepared by ALD at low temperature ($<100^{\circ}C$) show high adsorption capacity for toluene. In combination with nanostructured templates, $TiO_2$ thin films can be used as building-block of high-performing VOC filter. 2) $TiO_2$ thin films on carbon fibers and nanodiamonds annealed at high temperatures are active for photocatalytic oxidation of VOCs, i.e. photocatalytic filter can be created by atomic layer deposition. 3) NiO can catalyze oxidation of toluene to $CO_2$ and $H_2O$ at $<300^{\circ}C$. $TiO_2$ thin films on NiO can reduce poisoning of NiO surfaces by reaction intermediates below $200^{\circ}C$. We also fabricated inverted organic solar cell based on ZnO electron collecting layers on ITO. $TiO_2$ thin films with a mean diameter less than 3 nm on ZnO can enhance photovoltaic performance by reducing electron-hole recombination on ZnO surfaces.

  • PDF