• Title/Summary/Keyword: Ti powder

Search Result 1,435, Processing Time 0.029 seconds

Development of Metal Oxide-based Photocatalyst Coated on Activated Carbon for Removing Volatile Organic Compounds (휘발성 유기화합물 저감을 위한 금속산화물 기반 광촉매-활성탄 복합체 개발)

  • Jae-Rak, Ko;Yewon, Jang;Ho Young, Jun;Hwan-Jin, Bae;Ju-Hyun, Lee;Chang-Ho, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.285-292
    • /
    • 2022
  • Adsorption tower systems based on activated carbon adsorption towers have mainly been employed to reduce the emission of volatile organic compounds (VOCs), a major cause of air pollution. However, the activated carbon currently used in these systems has a short lifespan and thus requires frequent replacement. An approach to overcome this shortcoming could be to develop metal oxide photocatalysis-activated carbon composites capable of degrading VOCs by simultaneously utilizing photocatalytic activation and powerful adsorption by activated carbon. TiO2 has primarily been used as a metal oxide photocatalyst, but it has low economic efficiency due to its high cost. In this study, ZnO particles were synthesized as a photocatalyst due to their relatively low cost. Silver nanoparticles (Ag NPs) were deposited on the ZnO surface to compensate for the photocatalytic deactivation that arises from the wide band gap of ZnO. A microfluidic process was used to synthesize ZnO particles and Ag NPs in separate reactors and the solutions were continuously supplied with a pack bed reactor loaded with activated carbon powder. This microfluidic-assisted pack bed reactor efficiently prepared a Ag-ZnO-activated carbon composite for VOC removal. Analysis confirmed that Ag-ZnO photocatalytic particles were successfully deposited on the surface of the activated carbon. Conducting a toluene gasbag test and adsorption breakpoint test demonstrated that the composite had a more efficient removal performance than pure activated carbon. The process proposed in this study efficiently produces photocatalysis-activated carbon composites and may offer the potential for scalable production of VOC removal composites.

Development of Textured 0.37PMN-0.29PIN-0.34PT Ceramics-Based Multilayered Actuator for Cost-Effective Replacement of Single Crystal-Based Actuators

  • Temesgen Tadeyos Zate;Jeong-Woo Sun;Nu-Ri Ko;Bo-Kun Koo;Hye-Lim Yu;Min-Soo Kim;Woo-Jin Choi;Soon-Jong Jeong;Jae-Ho Jeon;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.362-368
    • /
    • 2023
  • Multilayered actuators using Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbTiO3 (PMN-PIN-PT) crystals have demonstrated excellent properties, but are costly and lack mechanical strength. Textured PMN-PIN-PT ceramics exhibit robust mechanical strength and comparable properties to their single crystals form. However, the development of multilayered actuators using textured PMN-PIN-PT ceramics has not been achieved until now. This study presents the development of a multilayered actuator using textured 0.37PMN-0.29PIN-0.34PT ceramics with an Ag0.9/Pd0.1 inner electrode, co-fired at 950℃. A random 0.37PMN-0.29PIN-0.34PT ceramics multilayered actuator was also developed for comparison. The multilayered actuator consisted of 9 ceramic layers (36 ㎛ thickness) with an overall actuator thickness of 0.401 mm. The textured and random 0.37PMN-0.29PIN-0.34PT ceramics-based multilayered actuators achieved displacements of 0.61 ㎛ (0.15% strain) and 0.23 ㎛ (0.057% strain) at a low applied peak voltage of 100 V. These results suggest that the developed multilayered actuator using high-performance textured 0.37PMN-0.29PIN-0.34PT ceramics has the potential to replace expensive single crystal-based actuators cost-effectively.

Impurity analysis and acid leaching purification of silica minerals (실리카광물의 산침출 정제와 불순물 분석법 연구)

  • Lee, Kil Yong;Yoon, Yoon Yeol;Cho, Soo Young;Chae, Young-Bae
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.516-523
    • /
    • 2007
  • Purification of silica mineral has been investigated by acid leaching of pulverized silica. A series of studies has been carried out on the effect of leaching silica powder as a function of the leaching time at the constant temperature of $80^{\circ}C$ in oxalic acid, aqua regia, and two mixed acids of HF/HCl, $HF/HNO_3$. The impurities of silica and leachantes were measured by neutron activation analysis (NAA), inductively coupled plasma atomic emission spectrometry (ICP-AES), atomic absorption spectrometry, x-ray fluorescence (XRF) method and wet analysis (WA). Certain metals, such as sodium, calcium, iron, aluminium and titanium, have been found in concentrations of hundreds or even thousands of mg/kg. Comparison of purification processes of silica and analytical methods of impurities in the silica was conducted in this study.

A Comparison of Structural Characterization of Composite Alumina Powder Prepared by Sol-Gel Method According to the Promoters (졸-겔법으로 제조된 복합 알루미나 미분체의 첨가제에 의한 구조적 특성 비교)

  • Lee, Jung-Woon;Yoon, Ho-Sung;Chae, U-Suk;Park, Han-Jin;Hwang, Un-Yeon;Park, Hyung-Sang;Park, Dal-Ryung;Yoo, Seung-Joon
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.503-510
    • /
    • 2005
  • In this research, composite alumina was prepared to add the various promoters by sol-gel method and examined its thermal stability. After sintering at $1,200^{\circ}C$, the thermal stability resulted in following order, $Si{\fallingdotseq}La$ > Ti > $Ba{\fallingdotseq}Ce$ > Y > $Zr{\fallingdotseq}Mg$, in accordance with adding the promoters. Especially in case of silica-added alumina, a phase transformation temperature to ${\alpha}$-alumina increased about $150^{\circ}C$ and after sintering at $1,200^{\circ}C$, it showed to maintain in ${\gamma}$-form and ${\delta}$-form alumina phase. Also it showed an increase of surface area from $3m^2/g$ to $71m^2/g$ compared with pure ${\alpha}$-alumina. In the case of silicaadded alumina, the characterization change of this alumina particle resulted in a delay of phase transformation because Si-O-Al bond was increased when sintered at high temperature. In case of lanthanum-added alumina, there was a sintering delay phenomenon in inter-particles as $LaAlO_3$ structure existed. The existence of lanthanum structure was confirmed by XRD and XPS analysis. It appeared on the alumina surface as $La_2O_3$ structure when it was sintered under $1,000^{\circ}C$, as the perovskite structure of $LaAlO_3$ at above $1,000^{\circ}C$ and as the magneto-plumbite structure of $LaAl_{11}O_{18}$ at above $1,300^{\circ}C$.

Removal of Red Tide Organisms -2. Flocculation of Red Tide Organisms by Using Loess- (적조생물의 구제 -2. 황토에 의한 적조생물의 응집제거-)

  • KIM Sung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.455-462
    • /
    • 2000
  • The objective of this study was to examine the physicochemical characteristics of coagulation reaction between loess and red tide organisms (RTO) and its feasibility, in developing a technology for the removal of RTO bloom in coastal sea. The physicochemical characteristics of loess were examined for a particle size distribution, surface characteristics by scanning electron microscope, zeta potential, and alkalinity and pH variations in sea water. Two kinds of RTO that were used in this study, Cylindrothen closterium and Skeietonema costatum, were sampled in Masan bay and were cultured in laboratory. Coagulation experiments were conducted using various concentrations of loess, RTO, and a jar tester. The supernatant and RTO culture solution were analyzed for pH, alkalinity, RTO cell number. A negative zeta potential of loess increased with increasing pH at $10^(-3)M$ NaCl solution and had -71.3 mV at pH 9.36. Loess had a positive zeta potential of +1,8 mV at pH 1.98, which resulted in a characteristic of material having an amphoteric surface charge. In NaCl and $CaCl_2$, solutions, loess had a decreasing negative zeta potential with increasing $Na^+\;and\;Ca^(+2)$ ion concentration and then didn't result in a charge reversal due to not occurring specific adsorption for $Na^+$ ion while resulted in a charge reversal due to occurring specific adsorption for $Ca^(+2)$ ion. In sea water, loess and RTO showed the similar zeta potential values of -112,1 and -9.2 mV, respectively and sea sand powder showed the highest zeta potential value of -25.7 mV in the clays. EDLs (electrical double-layers) of loess and RTO were extremely compressed due to high concentration of salts included in sea water, As a result, there didn't almost exist EDL repulsive force between loess and RTO approaching each other and then LVDW (London-yan der Waals) attractive force was always larger than EDL repulsive force to easily form a floe. Removal rates of RTO exponentially increased with increasing a loess concentration. The removal rates steeply increased until $800 mg/l$ of loess, and reached $100{\%}$ at 6,400 mg/l of loess. Removal rates of RTO exponentially increased with increasing a G-value. This indicated that mixing (i.e., collision among particles) was very important for a coagulation reaction. Loess showed the highest RTO removal rates in the clays.

  • PDF