• Title/Summary/Keyword: Ti hydride

Search Result 68, Processing Time 0.021 seconds

The Effect of Hydride Phase on the Hydrogen Sorption Properties of the Non-Evaporable Ti0.3Zr0.2V0.5 Getter Alloy (Ti0.3Zr0.2V0.5 합금의 수소흡수 특성에 미치는 수소화물의 영향)

  • Lee Dongjin;Park Jeshin;Suh Changyoul;Lee Jaechun;Kim Wonbaek
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.306-312
    • /
    • 2005
  • The hydrogen sorption properties of $Ti_{0.3}Zr_{0.2}V_{0.5}$ NEC(non-evaporable getter) alloy and its hydrides were evaluated at room temperature. The alloy and hydride powders were prepared by the Hydride-DeHydride(HDH) method. The hydrogen sorption speed of $Ti_{0.3}Zr_{0.2}V_{0.5}$ alloy was measured to increase with the amounts of hydride phase in the getter. The hydrogen sorption speeds of $Ti_{0.3}Zr_{0.2}V_{0.5},\;(Ti_{0.3}Zr_{0.2}V_{0.5})H_{1.52},\;and\;(Ti_{0.3}Zr_{0.2}V_{0.5})H_{1.94}$ were 2.22, 3.14 and 5.08 liter/sec, respectively. The unexpected enhancement of hydrogen sorption speed with the presence of the hydride phase is considered to be due to the pre-saturation of hydrogen trap sites which can retard the diffusion of hydrogen in the alloy.

A Study on Performance Characteristics of Ti-Zr Type Metal Hydrides and Hydrogen Storage Cylinders with the Hydrides (Ti-Zr계 금속수소화물 및 수소저장실린더의 성능특성 연구)

  • Kim, Ki-Youl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.519-526
    • /
    • 2012
  • Recently fuel cell is considered to be a new technology that can substitute the ICE(Internal Combustion Engine) as well as overcome environmental issues. In military applications, fuel cell has an unique advantages, which are quietness, namely, stealth. The environmental requirement such as shock and vibration in military application, however, is very severe comparing to civilian demand. Especially, the safety concerning hydrogen storage is the most important problem. Among the candidate methods to store hydrogen, the metal hydride storage is promising method owing to the storage mechanism of chemical absorption of hydrogen to metal hydrides. In this study, the new composition of Ti-Zr type metal hydride(A composition) was suggested and investigated to increase the hydrogen storage capacity. For comparison, the hydrogen charge-discharge properties were investigated with the commercialized Ti-Zr type metal hydride(B composition) using PCT(Pressure-Composition-Temperature) measurement. Also two hydrogen storage cylinders were loaded with each metal hydride and their hydrogen charging and discharging characteristics were investigated. As a result, it was found that the new Ti-Zr type metal hydride has a slightly higher hydrogen storage capacity compared to commercial Ti-Zr type metal hydride.

GaN Grown Using Ti Metal Mask by HVPE(Hydride Vapor Phase Epitaxiy) (HVPE(Hydride Vapor Phase Epitaxiy) 성장법으로 Ti metal mask를 이용한 GaN 성장연구)

  • Kim, Dong-Sik
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.1-5
    • /
    • 2011
  • The epitaxial GaN layer of $120{\mu}m$ ~ $300{\mu}m$ thickness with a stripe Ti mask pattern is performed by hydride vapor phase epitaxy(HVPE). Ti strpie mask pattern is deposited by DC magnetron sputter on GaN epitaxial layer of $3{\mu}m$ thickness is grown by hydride vapor phase epitaxy(HVPE). Void are observed at point of Ti mask pattern when GaN layer is investigated by scanning electron microscope. The Crack of GaN layer is observed according to void when it is grown more thick GaN layer. The full width at half maximum of peak which is measured by X-ray diffraction is about 188 arcsec. It is not affected its crystallization by Ti meterial when GaN layer is overgrown on Ti stripe mask pattern according as it is measure FWHM of overgrowth GaN using Ti material against FWHM of first growth GaN epitaxial layer.

Hydrogenation Behavior of Sponge Titanium (스폰지 티타늄의 수소화 거동)

  • Park, Ji-Hwan;Lee, Dong-Won;Kim, Jong-Ryoul
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.385-389
    • /
    • 2010
  • Titanium powders have been usually produced by de-hydrogenating treatment in vacuum with titanium hydride ($TiH_2$) powders prepared by milling of hydrogenated sponge titanium, $TiH_x$. The higher stoichiometry of x in $TiH_x$, whose maximum value is 2, is achieved, crushing behavior is easier. $TiH_x$ powder can be, therefore, easy to manufactured leading to obtain higher recovery factor of it. In addition, contamination of the powder can also minimized by the decrease of milling time. In this study, the hydrogenation behavior of sponge titanium was studied to find the maximum stoichiometry. The maximum stoichiometry in hydride formation of sponge titanium could be obtained at $750^{\circ}C$ for 2 hrs leading to the formation of $TiH_{{\sim}1.99}$ and the treating temperatures lower or higher than $750^{\circ}C$ caused the poor stoichiometries by the low hydrogen diffusivity and un-stability of $TiH_x$, respectively. Such experimental behavior was compared with thermodynamically calculated one. The hydrogenated $TiH_{1.99}$ sponge was fully ball-milled under -325 Mesh and the purity of pure titanium powders obtained by de-hydrogenation was about 99.6%.

A Study on the Synthesis of Titanium Nitride by SHS(Self-propagating High-temperature Synthesis) Method (자체반응열 고온합성법에 의한 질화티타늄 합성에 관한 연구)

  • Ha, Ho;Kim, Kwang-Rae;Lee, Hee-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.12
    • /
    • pp.1096-1102
    • /
    • 1993
  • Titanium nitride was synthesized by reacting Ti powder with nitrogen gas using SHS method. In this process, the effects of nitrogen pressure, dilution with TiN, or additiion of titanium hydride(TiH1.924) on the conversion of Ti to TiN were investigated. In particular, much effects were given to solve the problem of the conversion drop due to partial melting and subsequent sintering of Ti parciels, by controlling combustion temperature and combustion wave velocity via mixing Ti powder with TiN or/and TiH1.924. For the diluted titanium powders with TiN, the conversion close to 100% was resulted when the nitrogen pressure was over 8atm and with diluent content of 60wt%, and the self-propagating reaction was not sustained when the diluent content was higher than 60wt%. For samples mixed to be 55wt% in Ti component in the mixture of Ti, TiH1.924, and 45% TiN, the conversion was closed to 100% when the amount of titanium hydride added was over 7wt% and the nitrogen pressure was higher than 5atm. The combustion reaction, however, was not sustained when titanium hydride added was more than 10wt%.

  • PDF

Effect of Annealing Treatment on Microstructure and Hydrogen Embrittlement of Ti-6Al-4V Alloys Subject to Electrochemical Hydrogen Charging (전기화학적 수소 주입에 의한 Ti-6Al-4V 합금의 미세조직과 수소 취성에 미치는 어닐링 처리의 영향)

  • Ko, S.W.;Lee, J.M.;Kwon, Y.N.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.211-217
    • /
    • 2020
  • This paper presents a study on the hydrogen embrittlement of Ti-6Al-4V alloys with different microstructures depending on annealing treatment. They were electrochemically charged with hydrogen and subjected to tensile tests to investigate hydrogen embrittlement behavior. Tensile test results showed that the elongation of Ti-6Al-4V alloy specimens was remarkably decreased with increasing the volume fraction of β phase after hydrogen charging. This is because the β phase with a relatively low diffusivity tends to easily form a hydride at grain boundaries during electrochemical hydrogen charging. After hydrogen charging of the Ti-6Al-4V alloy specimen, it found that silver particles were decorated mostly at the grain boundary, and coarser silver particles were usually formed in the specimen annealed at 950 ℃. Therefore, the specimen having higher β phase fraction shows a poor hydrogen embrittlement resistance because the β phase promotes the formation of coarse hydride during electrochemical hydrogen charging, which leads to a large decrease in ductility.

Fabrication of $TiH_2$ Powders from Titanium Tuning Chip by Mechanical Milling

  • Jang, Jin-Man;Lee, Won-Sik;Ko, Se-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.969-970
    • /
    • 2006
  • In present work, manufacturing technologies of titanium hydride powder were studied for recycling of titanium tuning chip and for this, attrition ball milling was carried out under $H_2$ pressure of 0.5 MPa. Ti chips were completely transformed into $TiH_2$ within several hundred seconds. Dehydrogenation process $TiH_2$ powders is consist of two reactions: one is reaction of $TiH_2$ to $TiH_x$ and the other decomposition of $TiH_x$ to Ti and $H_2$. The former reaction shows relatively low activation energy and it is suggested that the reaction is caused by introduction of defects due to milling.

  • PDF

Synthesis of Titanium Hydride Powder Via Magnesiothermic Reduction of TiCl4 in H2 gas Atmosphere (수소분위기 내 사염화타이타늄의 마그네슘 열환원을 이용한 수소화타이타늄 분말 합성)

  • Sung-Hun Park;So-Yeong Lee;Ho-Seong Lee;Jungshin Kang;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.19-32
    • /
    • 2023
  • A novel method for the synthesis of titanium hydride powder from titanium tetrachloride via the magnesiothermic reduction in an hydrogen gas atmosphere was investigated. To examine the influence of temperature on the formation of titanium hydride, the reduction was conducted at 1023~1123 K under 1 atm of hydrogen gas atmosphere for approximately 30 min. Subsequently, the titanium hydride powder was sintered by maintaining the temperature for 0~120 min, and the decrease in the oxygen concentration of the powder was investigated. The experimental results showed that TiH1.924 was produced at 1023 K, whereas mixtures of TiH1.924 and TiH1.5 were produced at 1073 K and 1123 K. In addition, the hydrogen concentration in the powder decreased with increasing temperature. The concentration of oxygen in the powder decreased with increasing temperature and sintering time owing to the decrease in the specific surface area of the powder. The minimum concentration of oxygen was 0.246 mass% when the mixture of TiH1.924 and TiH1.5 was obtained at 1073 K and a sintering time of 120 min.

Synthesis of Titanium Carbide Nano Particles by the Mechano Chemical Process

  • Ahn, In-Shup;Park, Dong-Kyu;Lee, Yong-Hee
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2009
  • Titanium carbides are widely used for cutting tools and grinding wheels, because of their superior physical properties such as high melting temperature, high hardness, high wear resistance, good thermal conductivity and excellent thermal shock resistance. The common synthesizing method for the titanium carbide powders is carbo-thermal reduction from the mixtures of titanium oxide($TiO_2$) and carbon black. The purpose of the present research is to fabricate nano TiC powders using titanium salt and titanium hydride by the mechanochemical process(MCP). The initial elements used in this experiment are liquid $TiCl_4$(99.9%), $TiH_2$(99.9%) and active carbon(<$32{\mu}m$, 99.9%). Mg powders were added to the $TiCl_4$ solution in order to induce the reaction with Cl-. The weight ratios of the carbon and Mg powders were theoretically calculated. The TiC and $MgCl_2$ powders were milled in the planetary milling jar for 10 hours. The 40 nm TiC powders were fabricated by wet milling for 4 hours from the $TiCl_4$+C+Mg solution, and 300 nm TiC particles were obtained by using titanium hydride.

Fabrication of TiC powder by carburization of TiH2 powder (타이타늄 하이드라이드 분말의 침탄에 의한 타이타늄 카바이드 분말 제조)

  • Lee, Hun-Seok;Seo, Hyang-Im;Lee, Young-Seon;Lee, Dong-Jun;Wang, Jei-Pil;Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • Titanium carbide (TiC) powders are successfully synthesized by carburization of titanium hydride ($TiH_2$) powders. The $TiH_2$ powders with size lower than $45{\mu}m$ (-325 Mesh) are optimally produced by the hydrogenation process, and are mixed with graphite powder by ball milling. The mixtures are then heat-treated in an Ar atmosphere at $800-1200^{\circ}C$ for carburization to occur. It has been experimentally and thermodynamically determined that the de-hydrogenation, "$TiH_2=Ti+H_2$", and carburization, "Ti + C = TiC", occur simultaneously over the reaction temperature range. The unreacted graphite content (free carbon) in each product is precisely measured by acid dissolution and by the filtering method, and it is possible to conclude that the maximal carbon stoichiometry of $TiC_{0.94}$ is accomplished at $1200^{\circ}C$.