• Title/Summary/Keyword: Ti films

Search Result 2,491, Processing Time 0.026 seconds

Electrical Properties of (Bi,Y)4Ti3O12 Thin Films Grown by RF Sputtering Method

  • Nam, Sung-Pill;Lee, Sung-Gap;Bae, Seon-Gi;Lee, Young-Hie
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.98-101
    • /
    • 2007
  • Yttrium(Y)-substituted bismuth titanate $(Bi_{4-x},Y_x)Ti_3O_{12}$ [x=0, 0.25, 0.5, 0.75, 1](BYT) thin films were deposited using an RF sputtering method on the $Pt/TiO_2/SiO_2/Si$ substrates. The structural properties and electrical properties of yttrium-substituted $(Bi_4-xYx)Ti_3O_{12}$ thin films were analyzed. The remanent polarization of $(Bi_4-xYx)Ti_3O_{12}$ films increased with increasing Y-content. The $(Bi_{3.25}Y_{0.75})Ti_3O_{12}$ films fabricated using a top Au electrode showed saturated polarization-electric field(P-E) switching curves with a remanent polarization(Pr) of $8{\mu}C/cm^2$ and coercive field (Ec) of 53 kV/cm at an applied voltage of 7 V. The $(Bi_{3.25}Y_{0.75})Ti_3O_{12}$ films exhibited fatigue-free behavior up to $4.5{\times}10^{11}$ read/write switching cycles at a frequency of 1MHz.

CRYSTALLINE PHASES AND HARDNESS OF (Ti$_{1-x}$Al$_{x}$)N COATINGS DEPOSITED BY REACTIVE SPUTTERING

  • Park, Chong-Kwan;Park, Joo-Dong;Oh, Tae-Sung
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.525-531
    • /
    • 1996
  • (Ti1-xAlx)N films were deposited on high speed steel and silicon substrates by reactive sputtering in mixed $Ar-N_2$ discharges. Crystalline phases and microhardness of ($Ti_1_xAl_x$)N films were investigated with variation of the film composition and substrate RF bias voltage. With Al content x of about 0.6, crystalline phase of ( $Ti_1_xAl_x$N films was changed from single-phase NaCl structure to two phase mixture of NaCl and wurtzite structures: Microhardness of ($Ti_1_xAl_x$)N films was largely improved by applying RF bias voltage above 50 V during deposition. Hardness of ($Ti_1_xAl_x$)N films reached a maximum value for Al content x of about 0.4, and 1900 kg/$mm^2$ was obtained for 1$\mu m$-thick ($Ti_{0.6}Al_{0.4}$)N films.

  • PDF

A study on the development of thin solid state batteries (박막 고체전지 개발에 관한 연구)

  • 권혁상;이홍로
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.215-221
    • /
    • 1992
  • This research is aimed at developing(110) preferred TiS2 cathode films and glass typed solid electro-lytes which have high ionic migrations and low electron conductivities for thin secondary solid batteries. To obtain preferred oriented TiS2 thin films on a substrate by CVD method using TiCl4 and H2S gases three factors of heating temperature, inner pressure of furnace and TiCl4/H2S gas mole fraction were ex-amined systematically. To obtain solid films of Li2O-B2O3-SiO2 electrolytes by r.f. sputtering for thin proto-type batteries of Li/Li2O-B2O3-SiO2TiS2, sputtering conditions were examined. TiS2 cathode films showed columnar structure, namely c axis oriented parallely. At low pressure of reaction chamber and low heating temperature, surface of smooth TiS2 films couldd be obtained. Ionic conductivity of Li2O-B2O3-SiO2 films manufactured by r.f. magnetron sputtering were 3$\times$10-7$\Omega$-1cm-1 and electron conductivities were 10-11$\Omega$-1cm-1. Open cell voltage of thin lithium batteries were 2.32V with a designed prototype cell.

  • PDF

Transparent Thin Film Dye Sensitized Solar Cells Prepared by Sol-Gel Method

  • Senthil, T.S.;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1188-1194
    • /
    • 2013
  • Transparent $TiO_2$ thin films have been prepared by sol-gel spin coating method. The sols used for deposition of thin films were prepared with different ethanol content. The effect of ethanol (solvent) concentration and annealing temperature on the performance of $TiO_2$ thin film solar cells has been studied. The results indicate that the as deposited films are amorphous in nature. $TiO_2$ thin films annealed at temperatures above $350^{\circ}C$ exhibited crystalline nature with anatase phase. The results also indicated that the crystallinity of the films improved with increase of annealing temperature. The high resolution transmission electron microscope images showed lattice fringes corresponding to the anatase phase of $TiO_2$. The band gap of the deposited films has been found to decrease with increase in annealing temperature and increase with increase in ethanol concentration. The dependents of photovoltaic efficiency of the dye-sensitized $TiO_2$ thin film solar cells (DSSCs) with the amount of ethanol used to prepare thin films was determined from photocurrent-voltage curves.

Synthesis and Photocatalytic Activity of TiO2/BiVO4 Layered Films under Visible Light Irradiation

  • Li, Xuan;Zhang, Zhuo;Zhang, Feng-Jun;Liu, Jin;Ye, Jie;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.665-669
    • /
    • 2016
  • $TiO_2/BiVO_4$ layered films were prepared by sol-gel and spin coating methods. X-ray diffraction (XRD), scanning electron microscopy (SEM) and Uv-vis spectroscopy were used to investigate the crystal structure, morphology and ultraviolet-visible absorption of the $TiO_2/BiVO_4$ films. The photocatalytic activity of the prepared films was inspected according to the degradation of methylene blue. The results show that the prepared films present a net chain structure; the absorption band edge had obvious red shift. The degradation of the methylene blue solution was about 80% after 300 mins using $TiO_2/BiVO_4$ layered films under visible light, which was stronger than when using only pure $TiO_2$ film and $BiVO_4$ film.

Effect of Oxygen Incorporation in the Fabrication of TiN Thin Film for Frame by UBM Sputtering System (UBM Sputtering System에 의한 안경테용 TiN막 제작에 있어 Oxygen 영향 연구)

  • Park, Moon Chan;Lee, Jong Geun;Joo, Kyung Bok;Lee, Wha Ja;Kim, Eung Soon;Choi, Kwang Ho
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.63-68
    • /
    • 2009
  • Purpose: TiN films were deposited on sus304 by unbalanced magnetron sputtering system which was designed and developed as unbalancing the strength of the magnets in the magnetron electrode. The effect of oxygen incorporation in the fabrication of deposited films was investigated. Methods: The cross sections of deposited films on Silicon wafer were observed by SEM to measure the thickness of the films, the components of the surface of the films were identified by XPS survey spectra, the compositional depth-profile of deposited films was examined by an XPS apparatus. Results: From the data of XPS depth profile of films, it could be seen that the element O as well as the elements Ti and N present in the surface of the film and the relative percentage of the element O was constant at 65 at.% with respect to the depth of film. Conclusions: The color change with thickness of the films had something to do with the change of Ti $ 2p_{3/2}$ peak intensity and shape mixed of $ TiO_2$, TiN, $ TiO_{x}N_{y}$ compound.

  • PDF

Studies on the Development of TiAIN/CrN Multi-layered Thin Films by Unbalanced Magnetron Sputtering Process (비대칭 스퍼터링에 의한 TiAIN/CrN 나노 다층 박막의 합성 및 특성 분석에 관한 연구)

  • Kim, Gwang-Seok;Kim, Bom-Sok;Lee, Sang-Yul
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.207-211
    • /
    • 2005
  • In this work a multi-layered nanostructured TiAIN/CrN superlattice coatings was synthesized using closed-field unbalanced magnetron sputtering method and the relationships between their superlattice period (1), micro-structure, hardness and elastic modulus were investigated. In addition, wear test at $500^{\circ}C$ and oxidation resistance test at $900^{\circ}C$ were performed to investigate high temperature properties of these thin films. The coatings were characterized in terms of microstructure and mechanical properties by transmission electron microscopy (TEM) and nano-indentation test. Results from TEM analysis showed that superlattice periods was inversely proportional to the jig rotation speed. The maximum hardness and elastic modulus of 37 GPa and 375 GPa were observed at superalttice period of 6.1 nm and 4.4 nm, respectively. An higher value of microhardness from TiAIN/CrN thin films than either TiAIN (30 GPa) or CrN (26 GPa) was noted while the elastic modulus was approximately an average of TiAIN and CrN films. These enhancement effects in superlattice films could be attributed to the resistance to dislocation glide across interface between the CrN and TiAIN layers. Much improved plastic deformation resistance ($H^3/E^2$) of 0.36 from TiAIN/CrN coatings was observed, compared with 0.15 and 0.16 from TiAIN and CrN, respectively. Also the wear resistance at $500^{\circ}C$ was largely increased than those of single TiAIN and CrN coatings and TiAIN/CrN coatings showed much reduced weight gain after exposure at $900^{\circ}C$ for 20 hours.

Analysis of Properties Multi-Layered TiN/CrN Thin Films Deposited by AIP Method (AIP법으로 증착된 TiN/CrN 다층박막의 특성 분석)

  • Baek, Min-Sook;Yoon, Dong-Joo;Heo, Ki-Bok;Kim, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.405-410
    • /
    • 2018
  • TiN and CrN thin films are among the most used coatings in machine and tool steels. TiN and CrN are deposited by arc ion plating(AIP) method. The AIP method inhibits the reaction by depositing a hard, protective coating on the material surface. In this study, the characteristics of multi-layer(TiN/CrN/TiN(TCT), CrN/TiN/CrN(CTC)) are investigated. For comparison, TiN with the same thickness as the multilayer is formed as a single layer and analyzed. Thin films formed as multilayers are well stacked. The characteristics of micro hardness and corrosion resistance are better than those of single layer TiN. The TiN/CrN peak is confirmed because both TCT and CTC are formed of the same component(TiN, CrN), and the phase is first grown in the (111) direction, which is the growth direction. However, the adhesion and abrasion resistance of the multilayer films are somewhat lower.

Electrical and Optical Properties of Ti-ZnO Films Grown on Glass Substrate by Atomic Layer Deposition (원자층 증착법을 통하여 유리 기판에 증착한 Ti-ZnO 박막의 전기적 광학적 특성)

  • Lee, U-Jae;Kim, Tae-Hyeon;Gwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.57-57
    • /
    • 2018
  • Zinc-oxide (ZnO), II-VI semiconductor with a wide and direct band gap (Eg: 3.2~3.4 eV), is one of the most potential candidates to substitute for ITO due to its excellent chemical, thermal stability, specific electrical and optoelectronic property. However, the electrical resistivity of un-doped ZnO is not low enough for the practical applications. Therefore, a number of doped ZnO films have been extensively studied for improving the electrical conductivities. In this study, Ti-doped ZnO films were successfully prepared by atomic layer deposition (ALD) techniques. ALD technique was adopted to careful control of Ti doping concentration in ZnO films and to show its feasible application for 3D nanostructured TCO layers. Here, the structural, optical and electrical properties of the Ti-doped ZnO depending on the Ti doping concentration were systematically presented. Also, we presented 3D nanostructured Ti-doped ZnO layer by combining ALD and nanotemplate processes.

  • PDF

A Study of Structure & Composition Characteristics of the(Ti, Al) N Coating on the STS 304 by D.C. Magnetron Sputtering (D.C. Magnetron Sputter를 이용한 (Ti, Al) N 피막의 조성 및 조직특성연구)

  • 최장현;이상래
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.223-233
    • /
    • 1992
  • (Ti, Al)N films were deposited on 304 stainless steel by D.C. magnetron sputtering using Al target and Ti plate. The properties of (Ti, Al)N films such as composition, microhardness, grain size, crystal structure were investigated. The chemical composition of (Ti, Al)N films was similar to the sputter area ratio of titanium to aluminum target by means of EDS and AES survey. The higher bias voltage to substrate and the smaller input of N2 gas showedthe increased microhardness and the finer grain size of the films. The results obtained from this study show, it is belived, that the (Ti, Al)N film by D.C.magne-tron sputtering is promising in the wear resistance use.

  • PDF