• Title/Summary/Keyword: Ti coating

Search Result 1,216, Processing Time 0.031 seconds

Comparative study on impact behavior of TiN and TiAlN coating layer on WC-Co substrate using Arc ion Plating Technique (아크이온 플레이팅법으로 WC-Co에 증착된 TiN 및 TiAlN박막의 충격특성 비교)

  • 윤순영;류정민;윤석영;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.6
    • /
    • pp.408-414
    • /
    • 2002
  • TiN and TiAlN coating layer were deposited on WC-Co steel substrates by an arc ion plating(AIP) technique. The crystallinity and morphology for the deposited coating layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The impact behaviors of the deposited TiN and TiAlN coating layer were investigated with a ball-on-plate impact tester. Beyond $10^2$ impact cycle, TiAlN coating layer showed superior impact wear resistance compared to TiN coating layer. On the other hand, both TiN and TiAlN coating layers started to be partially failed between $10^2$ and $10^3$ impact cycle. Above $10^3$ impact cycle, TiN and TiAlN coating layers showed similar impact behavior because of the substrate effect.

Corrosion Behavior of TiN Ion Plated Steel Plate(I)-Effects of Ti interlayer and TiN coating thickness (TiN 이온 플레이팅한 강판의 내식성에 관한 연구(I)-Ti 하지 코팅 및 TiN 코팅 두께의 영향)

  • Yeon, Yun Mo;Han, Jeon Geon;Kim, Dae Jin;Bae, Eun Hyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.34-34
    • /
    • 1991
  • Corrosion behavior of TiN coated steel was studied in terms of thickness of interlayer Ti and TiN coating TiN was are ion plated to a thickness of 1$\mu\textrm{m}$ and 2$\mu\textrm{m}$ respectively with interlayer coating of Ti of 1$\mu\textrm{m}$, 2$\mu\textrm{m}$ and 3$\mu\textrm{m}$. Corrosion resistance of TiN coated steel was evaluated by anodic palarization test in 1N H2SO4 as well as salt spray test. Porosity of each coating was also tested by using SO2 test method. Corrosion current density decreased with increasing TiN coating thickness and Ti interlayer coating markedly enhanced the corrosion resistance. Ti interlayer coating of 2$\mu\textrm{m}$ and 3$\mu\textrm{m}$ prior to 2$\mu\textrm{m}$ TiN coating decreased the corrosion current density of active range by an order of 4 and that of passive range by an order of 2. This improvement was associated with the retardation of corrosive agent penetration with increasing coating thickness and inherent corrosion resistance of Ti interlayer. Ti interlayer coating was also very effective in improvement of corrosion resistance under salt atmosphere.

Corrosion Behavior of TiN Ion Plated Steel Plate(I) -Effects of Ti interlayer and TiN coating thickness- (TiN 이온 플레이팅한 강판의 내식성에 관한 연구(I) - Ti 하지 코팅 및 TiN 코팅 두께의 영향 -)

  • 연윤모;한전건;김대진;배은현
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 1992
  • Corrosion behavior of TiN coated steel was studied in terms of thickness of interlayer Ti and TiN coating. TiN was arc ion plated to a thickness of 1$\mu\textrm{m}$ and 2$\mu\textrm{m}$ respectively with interlayer coating of Ti of 1$\mu\textrm{m}$, $2\mu\textrm{m}$ and $3\mu\textrm{m}$. Corrosion resistance of TiN coated steel was evaluated by anodic palarization test in 1N $H_2$SO$_4$ as well as salt spray test. Porosity of each coating was also tested by using $SO_2$ test method. Corrosion current density decreased with increasing TiN coating thickness and Ti interlayer coating markedly enhanced the corrosion resistance. Ti interlayer coating of $2\mu\textrm{m}$ and $3\mu\textrm{m}$ prior to $2\mu\textrm{m}$ TiN coating decreased the corrosion current density of active range by an order of 4 and that of passive range by an order of 2. This improvement was associated with the retardation of corrosive agent penetration with increasing coating thickness and inherent corrosion resistance of Ti interlayer. Ti interlayer coating was also very effective in improvement of corrosion resistance under salt atmosphere.

  • PDF

Characteristics of corrosion fatigue strength of TiN coating steel (TiN 피복강재의 부식피로강도특성)

  • 김귀식;현경수;오맹종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.62-69
    • /
    • 1995
  • In order to investigate the effect of TiN coating on corrosion fatigue behavior of metal, the rotary bending corrosion fatigue tests were carried out in 3% NaCl solution by using the round bar specimens of high-speed steel, SKH-9, coated with TiN by PVD method. From the experimental results, fatigue strength of TiN coating steel in air was obvious improvement as compared with that of the substrate because of the restriction of dislocation movement in near surface of the substrate by hard thin film. In 3% NaCl solution, corrosion fatigue life of TiN coating specimen in high stress level was improvement same as in air. But in low stress level, corrosion fatigue life of TiN coating one was equivalent to that without coating, due to much crack initiated from corrosion pits formed at the substrate by failure of coating layer.

  • PDF

Corrosion Behavior of TiN Ion Plated Steel Plate(II)-Effects of Ni and Ni/Ti interlayers- (TiN 이온 플레이팅한 강판의 내식성에 관한 연구 (II)-Ni 및 Ni-Ti 하지코팅의 영향-)

  • 한전건;연윤모;홍준희
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.2
    • /
    • pp.82-89
    • /
    • 1992
  • The effect of interlayer coating of Ni and Ti on corrosion behavior was studied in TiN ion plated steel plate. Interlayer coating was carried out in a single and bi-layer to a various thickness combination prior to final TiN coating of $2\mu\textrm{m}$. Corrosion behavior was evaluated by anodic polarization test in 1N H2SO4 as well as salt spray test. Porosity of each coating was also tested by using SO2 test. Corrosion resistance was improved with increasing the thickness of Ni interlayer coating and Ni-Ti interlayer coating markedly enhanced the corrosion resistance. Ni/Ti interlayer coating of $2\mu\textrm{m}$/2$\mu\textrm{m}$ prior to $2\mu\textrm{m}$ TiN coating decreased the corrosion current density of active range by an order of 4 and that of passive range by an order of 1. This improvement was associated with the retardation of corrosive agent penetration with increasing coating thickness and inherent corrosion resistance of Ni and Ti interlayers, Ni/Ti interlayers coating were also very effective in improvement of corrosion resistance under salt atmosphere.

  • PDF

Research on Microstructure and Properties of TiN, (Ti, Al)N and TiN/(Ti, Al)N Multilayer Coatings

  • Wang, She Quan;Chen, Li;Yin, Fei;Jia, Li
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.658-659
    • /
    • 2006
  • Magnetron sputtered TiN, (Ti, Al)N and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates have been characterized by using electron probe microanalysis (EPMA), X-ray diffraction (XRD), scanning electron spectroscopy (SEM), nanoindentation, scratcher and cutting tests. Results show that TiN coating is bell mouth columnar structures, (Ti, Al)N coating is straight columnar structures and the modulation structure has been formed in the TiN/(Ti, Al)N multilayer coating. TiN/(Ti, Al)N multilayer coating exhibited higher hardness, better adhesion with substrate and excellent cutting performance compared with TiN and (Ti, Al)N coating.

  • PDF

Corrosion Behavior of TiN Ion Plated Steel Plate(III)-Effects of Ni and Ti interlayer thickness- (TiN 이온 플레이팅한 강판의 내식성에 관한 연구(III)-Ni 및 Ti 하지코팅두께의 영향-)

  • 한전건;연윤모
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.2
    • /
    • pp.55-62
    • /
    • 1993
  • The effect of interlayer coating thickness of Ni and Ti on corrosion behavior was studied for TiN ion plat-ed steel plate. Interlayer coating was carried out in a single and bi-layer to a various thickness combination prior to final TiN coating. Corrosion behavior was evaluated by anodic polarization test in 1N H2SO4 as well as salt spray test. Ni interlayer coating was effectived in reducing corrosion current density of active region and Ti interlayer coating over Ni coating reduced the anodic corrosion current density by an order of 4 with increasing the thickness of Ti up to$ 3\mu\textrm{m}$. The improvement of corrosion resistance by Ni/Ti interlayer coating was attributed to the effective prevention of penetration of active corrosion agent resulting from the inherent corrosion resistance of Ni and Ti. Putting corrosion behavior was observed from salt spray test result for all specimens and corrosion resistance at salt atmosphere was enhanced with increasing Ni and Ti thickness, Cor-lay TiN coating was spalled out by the generation of corrosion products.

  • PDF

DETORQUE FORCE OF TiN-COATED ABUTMENT SCREW WITH VARIOUS COATING THICKNESS AFTER REPEATED CLOSING AND OPENING

  • Kim, Han-Su;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.769-779
    • /
    • 2007
  • Statement of problem. When TiN coating is applied to the abutment screw, occurrence of greater preload and prevention of the screw loosening could be expected due to decrease of frictional resistance. However, the proper thickness of TiN coating on abutment screw has not been yet reported. Purpose. The purpose of this study is to find out the appropriate TiN coating thickness by evaluating the detorque force and the surface change of titanium abutment screw with various TiN coating thickness. Material and methods. 1. Material Thirty five non-coated abutment screws were prepared for TiN coating. TiN coatings were prepared by Arc ion plating method. Depending on the coating deposition time(CDT), experimental groups were divided into 6 groups(CDT 30min, 60min, 90min, 120min, 150min, 180min) and those of 1 group was not coated as a control group. Each group was made up of 5 abutment screws. 2. Methods FE-SEM(Field Emission Scanning Electron Microscoper) and EDX(Energy Dispersive X-ray Spectroscopy) were used to observe the surface of the abutment screw. Electric scales was used to measure the weight of the abutment screw after the repeated closing and opening of 10 trials. Detorque force was measured with digital torque gauge, at each trial. Results. 1. As the coating deposition time increased, the surface became more consistent and smooth. 2. As for the abutment screws that were TiN coated for more than 60 minutes, no surface change was found after the repeated closing and opening. 3. The TiN coated abutment screws showed less weight change than the non-coated abutment screws. 4. The TiN coated abutment screws showed higher mean detorque force than the noncoated abutment screws. 5. The abutment screw coated for 60 minutes showed the highest mean detorque force. Conclusion. The coating layer of proper thickness is demanded to obtain consistent and smooth coating surface, resistance to wear, and increased detorque force of the abutment screw. In conclusion, the coating deposition time of 60 minutes indicated improved mechanical property, when TiN coating was conducted on titanium abutment screw.

Additive Coating of BaTiO3 Powder using Sol Coating Method I - Development of Coating Process by BaTiO3 Sol (졸 코팅 법을 이용한 BaTiO3 분체의 첨가제 코팅 I - BaTiO3 졸 코팅 공정 연구)

  • 신효순
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.953-959
    • /
    • 2004
  • BaTiO$_3$ powder has been applied in so much electronic ceramics. Therefore, as recent, the method to add or coat additive will be needed BaTiO$_3$ powder. As a kind of the method, the coating of BaTiO$_3$ powder was considered. In this study, during BaTiO$_3$ powder was coated by BaTiO$_3$ sol, gelation path was experimented. Standard coating condition was set for homogeneous coating. The phase of the gel was deferent by gelation path. It was confirmed the amorphous gel was made in BaTiO$_3$ phase easily at low temperature. In the amorphous gel, particle growth was shown at 900$^{\circ}C$, because crystallization temperature was low. The optimal ratio of sol and powder was at 10 vol% for the homogeneous coating.

EFFECT OF ALUMINIDE-YTTRIUM COMPOSITE COATING ON THE OXIDATION RESISTANCE OF TiAl ALLOY

  • Jung, Hwan-Gyo;Kim, Jong-Phil;Kim, Kyoo-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.607-614
    • /
    • 1996
  • Yttrium(Y) coating was incorporated by ion-plating method either directly on the TiAl substrate or after pack aluminizing on TiAl to improve the oxidation resistance of TiAl alloy. After Y-coating, heat treatment at low oxygen partial pressure was carried out. Performance of various coating was evaluated by isothermal and cyclic oxidation tests. A simple Y-coating without pack aluminizing can give a detrimental effect on the. oxidation resistance of TiAl alloy, because it enhances formation of $TiO_2$. On the other hand, a composite coating of aluminide-yttrium has shown excellent oxidation resistance. A continuous protective $Al_2O_3$ scale is formed on the aluminized TiAl, and Y-coating improves $Al_2O_3$ scale adherence and substantially prevents depletion of Al in the aluminide-coating layer.

  • PDF