• Title/Summary/Keyword: Ti carbide.

Search Result 241, Processing Time 0.025 seconds

Fabrication of Fiber-Reinforced Composites by High Pressure Self-Combustion Sintering Method (고압 자전연소 소결법을 이용한 섬유강화 복합체의 제조)

  • 방환철;고철호;임동원;김봉섭;최태현;윤존도
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.444-452
    • /
    • 2000
  • Dense composites of titanium matrix and Al2O3 matrix with reinforcements of carbon or titanium carbide fibers were successfully fabricated by high-pressure self-combustion sintering method or combustion reacton under 30 MPa of uniaxial pressure with an aid of external heating in vaccum. It was found that the fibers were uniformly distributed in the matrix, and aligned in a phase perpendicular to the pressure axis. As a moel ratio of Ti/C or reaction time increased, the density of Ti-matrix composite increased Micro pores around fibers could be removed by using clean carbon fibers without sizing agent on their surface. The evolution of carbide fibers from carbon fibers was observed. The composition of the various phases around fibers were analyzed.

  • PDF

A Study on Characteristics of Tool Wear and Surface Roughness in Face Milling of Automobile Parts (승용차 부품의 정면밀링가공시 공구마모 및 표면거칠기 특성에 관한 연구)

  • 김성일;오성훈;문상돈;김태영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.223-230
    • /
    • 1996
  • The quality and productivity in machining automobile parts are influenced by various factors such as cutting conditions, vibration, and used tool. To improve the quality and productivity of the automobile parts(torsion beam), lots of research on the evaluation of tool life and control of surface roughness has been required. Therefore, the width of flank wear, cutting force, and surface roughness are monitored to analyse the characteristics of tool wear and surface roughness at different tools. This experimental investigation is mainly focused on the characteristics of the tool wear, tool life and surface roughness in multi-insert milling of automobile parts(torsion beam) by using uncoated tungsten carbide tool(WC), TiN coated tool, and cermet tool.

  • PDF

Microstructural Control of High Speed Steel Roll Material with Titanium and Niobium (Ti과 Nb에 의한 HSS 작업롤재의 미세조직 제어)

  • 김진수;김동규;최진원;이희춘
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.262-271
    • /
    • 1999
  • This work was intended to modify the solidification structure of high speed steel roll material for hot strip mill, by the introduction of alloying elements designed to form primary carbide dispersions via melt treatment procedure. Solidification structure was modified by the melt treatment with titanium and distribution. This modifying effect could be attributed to the fact that the nuclie formed at high temperature upon inoculation induce the formation of fine equiaxed grain and primary carbide during solification, which is also likely to be responsible for the fact that TiC acts as effective nuclie for primary VC solidification.

  • PDF

A Study on the Chemically Vapor Deposited TiC, TiN, and TiC(C, N) on $Si_3N_4$-TiC Ceramic Tools. ($Si_3N_4-TiC$ Ceramic 공구에 화학증착된 TiC, TiN 및 Ti(C, N)에 관한 연구)

  • 김동원;김시범;이준근;천성순
    • Tribology and Lubricants
    • /
    • v.4 no.2
    • /
    • pp.36-43
    • /
    • 1988
  • Titanium carbide(TiC) and titanium nitride(TiN) flims were deposited on $Si_3N_4$-TiC composite cutting tools by chemical vapor deposition(CVD) using $TiCl_4-CH_4-H_2$ and $TiCl_4-H_2-N_2$ gas mixtures, respectively. The nonmetal to metal ratio of deposit increases with increasing $m_{C/Ti}$(mole ratio of CH$_4$ to TiCl$_4$ in the input) for TiC coatings and $m_{N/Ti}$(mole ratio of N$_2$ to TiCl$_4$ in the input) for TiN coatings. The nearly stoiahiometric films could be obtained under the deposition condition of $m_{C/Ti}$ between 1.15 and 1.61 for TiC, and that of $m_{N/Ti}$ between 25 and 28 for TiN. Also maximum microhardness of the coatings can be obtained in these ranges. The interfacial region of TiC coatings on $Si_3N_4$-TiC ceramics is wider than that of TiN coatings according to Auger depth profile analysis, which indicates good interfacial bonding for TiC. Experimental results show that TiC coatings have an randomly equiaxed structure and Columnar structure with(220) preferred orientation can be obtained for TiN coatings. And, multilayer coatings have a dense and equiaxed structure.

Effects of Ti on Mechanical Property and Damping Capacity in Hot-rolled Fe-17%Mn Alloy (열간압연한 Fe-17wt%Mn 합금의 기계적 성질과 진동감쇠능에 미치는 티타늄 첨가의 영향)

  • Kim, Tai-Hoon;Kim, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.29 no.2
    • /
    • pp.59-63
    • /
    • 2009
  • Effects of Ti on damping capacity and mechanical properties are investigated in hot rolled Fe-17%Mn alloy. The existing damping alloy with Fe-Mn binary system was limited the use by high production cost, however in case of using scrap iron instead of pure iron although the content of carbon is higher it is possible to be applied wider field especially construction items because the production cost is lower. However, the excellent specific damping capacity is dropped due to the high content of carbon, we developed advanced type of damping alloy included Ti. TiC is formed with added Ti and it holds the specific damping capacity similar to existing damping alloy. The effect of Ti on damping capacity is found to be beneficial in carbon-containing alloy, which is attributed to the depletion of carbon solute due to the formation of TiC.

Effect of Additive Amount on Microstructure and Fracture Toughness of SiC-TiC Composites

  • Min-Jin Kim;Young-Wook Kim;Wonjoong Kim;Hun-Jin Lim;Duk-Ho Cho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.91-95
    • /
    • 2000
  • Powder mixtures of $\beta$-SiC-TiC in a weight ratio of 2:1 containing 5-20 wt% additives ($Al_2O_3$-$Y_2O_3$) were liquid-phase sintered at $1830^{\circ}C$ for 1h by hot-pressing and subsequently annealed at $1950^{\circ}C$ for 6h to enhance grain growth. The annealed specimens revealed a microstructure of \"in situ-toughened composite\" as a result of the $\beta$longrightarrow$\alpha$ phase transformation of SiC during annealing. The increase of the content of additives accelerated the growth of elongated $\alpha$-SiC grains with higher aspect ratio and improved fracture toughness. The fracture toughness of SiC-TiC composite containing 20 wt% additive was 6.2 MPa.$m^{1/2}$.2}$.

  • PDF

Analysis of Cutter Orientation when Ball Nose End Milling Nickel Based Superalloys (니켈계 합금의 볼엔드밀 가공에서 절삭 방향에 따른 영향)

  • Lee, Deuk-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2496-2501
    • /
    • 2000
  • High speed ball end milling is attracting interest in the aerospace industry for the machining of complex 31) airfoil surfaces in nickel based superalloys, Experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force and workpiece surface roughness, when high speed ball end milling nickel based supperalloy(lnconel 718). Dry cutting was performed using 8min diameter solid carbide cutters coated with either TiA1N or CrN for the workpiece mounted at an angle of 45˚ from the cutter axis. A horizontal downwards cutting orientation provided the best tool life with cut lengths~50% longer than for all other directions. Evaluation of cutting forces and associated spectrum analysis of results indicated that cutters employed in a horizontal downwards direction produced the least vibration.

Highly Active Electrocatalyst based on Ultra-low Loading of Ruthenium Supported on Titanium Carbide for Alkaline Hydrogen Evolution Reaction

  • Junghwan, Kim;Sang-Mun, Jung;Kyu-Su, Kim;Sang-Hoon, You;Byung-Jo, Lee;Yong-Tae, Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.417-423
    • /
    • 2022
  • With the emerging importance of catalysts for water electrolysis, developing efficient and inexpensive electrocatalysts for water electrolysis plays a vital role in renewable hydrogen energy technology. In this study, a 1nm thickness of TiC-supported Ru catalyst for hydrogen evolution reaction (HER) has been successfully fabricated using an electron (E)-beam evaporator and thermal decomposition of gaseous CH4 in a furnace. The prepared Ru/TiC catalyst exhibited an outstanding performance for alkaline hydrogen evolution reaction with an overpotential of 55 mV at 10 mA cm-2. Furthermore, we demonstrated that the outstanding HER performance of Ru/TiC was attributed to the high surface area of the support and the metal-support interaction.

Fabrication, Microstructures and High-Strain-Rate Properties of TiC-Reinforced Titanium Matrix Composites

  • 신현호;박홍래;장순남
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.259-259
    • /
    • 1999
  • TiC ceramic particulate-reinforced titanium matrix composites were fabricated and the resultant densification, microstructure, and static and dynamic mechanical properties were studied. Comparing Ti with TiH₂powders as host materials for TiC ceramic reinforcement by pressureless vacuum sintering, TiH₂-started composites showed better sinterability and resistance to both elastic and plastic deformation than Ti-started ones. When TiH₂and TiH₂-45 vol.%TiC samples were hot pressed, TiH₂matrices transformed to alpha prime Ti and alpha Ti phase, respectively. It is interpreted that the diffusion of an alpha stabilizer carbon from TiC into the matrix is one of the plausible reasons far such a microstructural difference. The 0.2% offset yield strengths of the hot pressed TiH₂and TiH₂-45 vol.%TiC samples were 1008 and 1446 MPa, respectively, in a static compressive mode (strain rate of 1×$10^{-3}$/s). Dynamic compressive strengths of the samples were 1600 and 2060 MPa, respectively, at a strain rate of 4×10³/s.

A Study on the Machining Characteristics of Ti-6Al-4V Alloy (Ti-6Al-4V 타이타늄 합금의 절삭특성에 관한 연구)

  • 김남용;고준빈;이동주
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.20-28
    • /
    • 2003
  • The machinability of Ti-6Al-4V titanium alloy and tool wear behavior in machining of Ti-6Al-4V titanium alloy was studied to understand the machining characteristics. This material is one of the strong candidate materials in present and future aerospace or medical applications. Recently, their usage has already been broaden to everyday's commercial applications such as golf club heads, finger rings and many decorative items. To anticipate the general use of this material and development of the titanium alloys in domestic facilities, the review and the study of the machining parameters for those alloys are necessary. This study is concentrated to the machining parameters of the Ti-6Al-4V alloy due to their dominant position in the production of titanium alloys.