• 제목/요약/키워드: Ti Welding

검색결과 237건 처리시간 0.031초

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Kawahito, Yousuke;Kim, Jong-Do;Katayama, Seiji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.711-717
    • /
    • 2013
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other structures because of their high strength, light weight and corrosion-resistance. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective measures to reduce weight of the structures or to save rare metals. Ti and Al have great differences in materials properties, and intermetallic compounds such as Ti3Al, TiAl, TiAl3 are easily formed at the contacting surface between Ti and Al. Thus, welding or joining of Ti and Al is considered to be extremely difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50m/min in this study) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Katayama, Seiji;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.133-139
    • /
    • 2014
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other ocean structures because of their high strength, corrosion-resistance and light weight properties. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective methode to reduce weight of the structures. Ti and Al have great differences in materials properties, and intermetallic compounds such as $Ti_3Al$, TiAl, $TiAl_3$ are easily formed at the contacting surface between Ti and Al. Thus, dissimilar welding and joining of Ti and Al are considered to be very difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50 m/min) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.

싱글모드 파이버 레이저를 이용한 SUS304와 Ti 이종재료의 용접속도에 따른 용접특성 (Weldability of SUS304 and Ti Dissimilar Welds with Various Welding Speed using Single Mode Fiber Laser)

  • 이수진;카타야먀 세이지;김종도
    • Journal of Welding and Joining
    • /
    • 제31권5호
    • /
    • pp.64-70
    • /
    • 2013
  • The joining of Ti and SUS304 dissimilar metals is one of the effective measures to save rare metal. But Ti and SUS304 have differences in materials properties, and Ti and Fe intermetallic compounds such as TiFe and $TiFe_2$ are easily formed in weld fusion zone between Ti and SUS304. Nevertheless, in this study, full penetration lap dissimilar welding of Ti and SUS304 using single-mode fiber laser with ultra-high welding speed was tried, and it was found out that ultra-high welding speed could control the generation of intermetallic compound. To recognize the formation of intermetallic phase in the weld fusion zone and the compound zone of interface weld area were observed and analyzed using energy dispersive X-ray spectroscopy (EDX). And it was confirmed that the ultra-high welding speed could reduce amount of intermetallic compounds, but the intermetallic compounds were existed in the weld fusion zone under the all conditions.

$CO_2$용접시 Spatter발생에 미치는 Ti의 영향 (Effect of Ti on Spatter Generation of $CO_2$Welding)

  • 안영호;이종봉;방국수;엄동석
    • Journal of Welding and Joining
    • /
    • 제14권5호
    • /
    • pp.106-112
    • /
    • 1996
  • The effects of Ti addition in welding wire on the spatter generation and the droplet transfer phenomena were investigated. With increasing Ti content the spattering rate was decreased but the ratio of large size spatter (D $\geq$ 1. 0mm) was increased in both short circuit and globular transfer mode of $CO_2$welding. In short circuit transfer region, the arcing time was increased and the droplet transfer frequency was decreased with increasing Ti content In globular transfer region, the transition current and voltage to globular transfer was lowered and the welding condition region for stable globular transfer was widened with increasing Ti content.

  • PDF

고탄소계 Cr-Ti 합금강 레일재의 용접성에 관한 기초연구

  • 강계명;송진태
    • Journal of Welding and Joining
    • /
    • 제8권1호
    • /
    • pp.54-61
    • /
    • 1990
  • A pilot production is made to the high carbon Cr-Ti alloy rail steels with slight quantity of Cr & Ti added to the eutectoid carbon steel. As a part of weldability of these alloy steels, SH-CCT diagram for welding is first applied to the high carbon Cr-ti alloy rail steel with 0.1wt% Ti. The microstructure, which will be appeared at the HAZ of Enclosed-arc welding of this alloy rail seel, is a single phase of pearlite. As a result of this, it shows that the welding condition of Enclosed-arc welding applied to this alloy rail steel is a good condition.

  • PDF

TiN 피막 처리된 스테인레스강 교정용 장치물의 금속 유리에 대한 연구 (A STUDY ON METAL RELEASE OF TIN ION-PLATED STAINLESS STEEL ORTHODONTIC APPLIANCES)

  • 김명숙;성재현;권오원
    • 대한치과교정학회지
    • /
    • 제25권1호
    • /
    • pp.43-54
    • /
    • 1995
  • TiN 피막 처리된 스테인레스강 교정용 장치물이, 전해질이 있는 구강내에 장기간 장착될 때 발생할 수 있는 금속 유리 정도를 파악하기 위해 상악 편측에 해당하는 모조 교정 장치를 제작하였다. welding을 실시하고 TiN 피막 처리한 시편을 제1군으로, welding을 실시하지 않고 TiN피 막 처리한 시편을 제2군으로, welding을 실시하고 TiN 피막 처리를 하지 않은 시편을 제3군으로 welding과 TiN 피막 처리를 실시하지 않은 시편을 제4군으로 하여 각 군당 10개씩의 시편을 준비하였다. 각 시편을 인공 타액내에 15일간 침적하여 용액 속에 유리되어 용해된 니켈과 크롬의 누계와 침전물 형태로 존재하는 니켈과 크롬의 양을 측정하여 총량의 차이를 TiN 피막 처리 유무와 welding 유무에 따라 t-test로 검정한 결과, welding을 실시한 두 군중 TiN 피막 처리 한 군에서 금속 유리량이 더 적었으며 , TiN 피막 처리한 두 군중 welding을 실시하지 않은 군에서 금속 유리량이 더 적은 것으로 나타났다. 표면 조직 관찰시 welding을 실시한 두 군에서 수많은 침전물과 Pitting corrosion이 보였으며 이 중 TiN 피막 처리한 군에서 그 정도가 낮았다. 본 실험을 통하여 스테인레스강 교정용 장치물에 TiN 피막 처리시 심미성 및 각종 물성의 개선 이외에도 금속 유리의 정량적인 분석 결과 내식성이 현저히 개선됨을 알 수 있었다.

  • PDF

용접 입열량에 따른 고질소 TiN 강재의 용접부 충격인성 및 미세조직 변화에 관한 연구 (A Study on the Impact Toughness and Microstructure change for High Nitrogen TiN Steel Alloy with Welding Heat Input.)

  • 권순두;이광학;박동환
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 추계학술발표대회 개요집
    • /
    • pp.123-124
    • /
    • 2004
  • This study was investigated on the impact toughness and microstructure of welded metal and heat affected zone for Hi Nitrogen TiN Steel. With welding procedures, welding heat input applied were 30, 79 and 264 kJ/cm. TiN steel has shown very small prior austenite grain size for all the welding heat input applied, which was considered to result from the effect of TiN particles. In case of single SAW and EGW welding, the dilution rate of base metal into the weld was not high, resulting that there were no significant effects of base metal chemical composition on the mechanical properties of welds. However, TSAW with double Ypreparation carried very high dilution rate so that TiN steel has impaired the toughness of weld metal because N content in the weld was increased through the dilution of base metal.

  • PDF

The Effects of TiN Particles on the HAZ Microstructure and Toughness in High Nitrogen TiN Steel

  • Jeong, H.C.;An, Y.H.;Choo, W.Y.
    • International Journal of Korean Welding Society
    • /
    • 제2권1호
    • /
    • pp.25-28
    • /
    • 2002
  • In the coarse grain HAZ adjacent to the fusion line, most of the TiN particles in conventional Ti added steel are dissolved and austenite grain growth is easily occurred during welding process. To avoid this difficulty, thermal stability of TiN particle is improved by increasing the nitrogen content in steel. In this study, the effect of hlgh nitrogen TiN particle on preventing austenite grain growth in HAZ was investigated. Increased thermal stability of TiN particle is helpful for preventing the austenite grain growth by pinning effect. High nitrogen TiN particle in simulated HAZ were not dissolved even at high temperature such as 1400'E and prevented the austenite grain growth in simulated HAZ. Owing to small austenite grain size in HAZ the width of coarse grain HAZ in high nitrogen TiN steel was decreased to 1/10 of conventional TiN steel. Even high heat input welding, the microstructure of coarse grain HAZ consisted of fine polygonal ferrite and pearlite and toughness of coarse grain HAZ was significantly improved.

  • PDF

Ti 및 Ti계 세라믹스에 의한 Al합금의 표면복합합금화 (Formation of Ti and Ti ceramics composite layer on aluminium alloy)

  • 임병수;문정훈;서창제
    • Journal of Welding and Joining
    • /
    • 제13권1호
    • /
    • pp.103-114
    • /
    • 1995
  • Plasma Transferred arc(PTA) hard facing process has been developed to obtain an overlay weld metal having excellent wear resistance. The effect of Ti, TiSi$_{2}$ and TiC powders addition on the surface of Aluminum alloy 5083 has been investigated with PTA process. This paper describes the result of test the performance of the overlay weld metal. The result can be summarized as follows 1. Intermetallic compound is formed on surface of base metal in Ti or TiSi$_{2}$ powder but the reaction with surface of base metal is little seen in TiC powder. 2. In formation of composite layer on aluminum alloy surface by plasma transferred arc welding process, high melting ceramics like TiC powder is excellent. 3. The multipass welding process is available for formation of high density of powder. But the more number of pass, the less effect of powder, it is considered, and limits of number of pass. 4. By increasing area fraction of TiC powder on Al alloy surface, in especially TiC powder the hardness increase more than 40% area fraction and 88% shows about Hv 700.

  • PDF

Recent developments and challenges in welding of magnesium to titanium alloys

  • Auwal, S.T.;Ramesh, S.;Tan, Caiwang;Zhang, Zequn;Zhao, Xiaoye;Manladan, S.M.
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.47-73
    • /
    • 2019
  • Joining of Mg/Ti hybrid structures by welding for automotive and aerospace applications has attracted great attention in recent years due mainly to its potential benefit of energy saving and emission reduction. However, joining them has been hampered with many difficulties due to their physical and metallurgical incompatibilities. Different joining processes have been employed to join Mg/Ti, and in most cases in order to get a metallurgical bonding between them was the use of an intermediate element at the interface or mutual diffusion of alloying elements from the base materials. The formation of a reaction product (in the form of solid solution or intermetallic compound) along the interface between the Mg and Ti is responsible for formation of a metallurgical bond. However, the interfacial bonding achieved and the joints performance depend significantly on the newly formed reaction product(s). Thus, a thorough understanding of the interaction between the selected intermediate elements with the base metals along with the influence of the associated welding parameters are essential. This review is timely as it presents on the current paradigm and progress in welding and joining of Mg/Ti alloys. The factors governing the welding of several important techniques are deliberated along with their joining mechanisms. Some opportunities to improve the welding of Mg/Ti for different welding techniques are also identified.