• Title/Summary/Keyword: Ti 스폰지

Search Result 6, Processing Time 0.023 seconds

A Study on the Formation Mechanism of Titanium Sponge in the Kroll Process (Kroll법에 의한 타이타늄 스폰지 생성기구에 관한 연구)

  • Jung, Jae-Young;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.54-60
    • /
    • 2017
  • In this study, we investigated the effect of $TiCl_4$ injection time on the Kroll reaction at a given weight ratio of $TiCl_4$ and Mg. The reduction reaction was investigated by measuring the temperature change according to $TiCl_4$ injection time and observing the cross section and appearance of the Ti sponge after the reaction. The temperature increment due to Kroll reaction heat generation was found to be linearly proportional to the $TiCl_4$ feed rate. In the graph of $TiCl_4$ injection time and reduction tank temperature, initial temperature peaks were observed irrespective of the injection conditions. This is interpreted to mean a temporary interruption of reaction due to $MgCl_2$ formation after the initial Kroll reaction. In addition, when the cross section of the sponge was observed, a large amount of spherical Mg particles was observed in $MgCl_2$. We can infer that this is the process of continuously feeding the unreacted Mg surface, so that a continuous Kroll reaction takes place. The sponge appearance showed that the coalescence or growth of the Kroll reacted Ti particles can be controlled by the cooling rate.

An Electrochemical Reduction of TiO2 Pellet in Molten Calcium Chloride (CaCl2 용융염에서 TiO2 펠렛의 전기화학적 환원반응 특성)

  • Ji, Hyun-Sub;Ryu, Hyo-Yeol;Jeong, Ha-Myung;Jeong, Kwang-Ho;Jeong, Sang-Mun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2012
  • A porous $TiO_2$ pellet was electrochemically converted to the metallic titanium by using a $CaCl_2$ molten salt system at $850^{\circ}C$. Ni-$TiO_2$ and graphite electrodes were used as cathode and anode, respectively. The electrochemical behaviour of $TiO_2$ pellet was determined by a constant voltage control electrolysis. Various reaction intermediates such as $CaTiO_3$, $Ti_2O$ and $Ti_6O$ were observed by XRD analysis during electrolysis of the pellet. Once $TiO_2$ pellet was converted to a porous metallic structure, the porous structure disappeared by sintering and shrinking with increasing the reaction time at high temperature.

특집 : 극한환경재료기술 - 지르코늄 금속의 제조 및 개발 동향

  • Lee, Dong-Won
    • 기계와재료
    • /
    • v.21 no.4
    • /
    • pp.66-73
    • /
    • 2010
  • 지르코늄은 지구상에 9번째로 풍부한 금속소재이며, 어느 금속소재 보다는 우수한 내식성을 보유하고 있으며 기계적 특성 및 열전도도가 기존의 SUS 계 및 Ti 계 소재와 유사한 특징이 있기 때문에, 핸드폰, 보철재료, 합성섬유, 석유화학 공업용 부품에 널리 사용되고 있다. 지르코늄 부품제조를 위해서는 무엇보다도 초기 금속원자재의 생산기술 확보가 선행되어야 한다. 즉, 초기 금속원자재인 지르코늄 금속스폰지의 제조기술의 확보가 필요하다. 본 고에서는 지르코늄 금속의 용도, 산업동향, 지르코늄 스폰지 제조기술 및 최근 연구개발 동향에 대해 간략히 소개하였다.

  • PDF

Hydrogenation Behavior of Sponge Titanium (스폰지 티타늄의 수소화 거동)

  • Park, Ji-Hwan;Lee, Dong-Won;Kim, Jong-Ryoul
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.385-389
    • /
    • 2010
  • Titanium powders have been usually produced by de-hydrogenating treatment in vacuum with titanium hydride ($TiH_2$) powders prepared by milling of hydrogenated sponge titanium, $TiH_x$. The higher stoichiometry of x in $TiH_x$, whose maximum value is 2, is achieved, crushing behavior is easier. $TiH_x$ powder can be, therefore, easy to manufactured leading to obtain higher recovery factor of it. In addition, contamination of the powder can also minimized by the decrease of milling time. In this study, the hydrogenation behavior of sponge titanium was studied to find the maximum stoichiometry. The maximum stoichiometry in hydride formation of sponge titanium could be obtained at $750^{\circ}C$ for 2 hrs leading to the formation of $TiH_{{\sim}1.99}$ and the treating temperatures lower or higher than $750^{\circ}C$ caused the poor stoichiometries by the low hydrogen diffusivity and un-stability of $TiH_x$, respectively. Such experimental behavior was compared with thermodynamically calculated one. The hydrogenated $TiH_{1.99}$ sponge was fully ball-milled under -325 Mesh and the purity of pure titanium powders obtained by de-hydrogenation was about 99.6%.

A Study of Process factors on the Recycling of Reactive Metal Scraps in Plasma Arc Remelting (Plasma Arc Remelting에서 활성 금속 Scrap 재활용에 미치는 공정인자의 연구)

  • Jung, Jae-Young;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.3-9
    • /
    • 2017
  • In this study, plasma arc remelting behaviors according to arc current, arc voltage, and types of plasma gas were investigated using Kroll processed Ti sponges as anode. In the discharge pressure range of vacuum pump ($200{\sim}300kgf/cm^2$), the arc voltage did not vary greatly with the increase of discharge pressure at a given arc length. This means that the pressure in the vacuum chamber during operation hardly changes and the atmospheric pressure maintains. Under various conditions of arc currents (700~900A), the arc voltage slightly increased with arc current. The effects of anode materials and operational variables on the arc length-arc voltage relationship were compared with the results in previous studies. When the atmospheric gas changed from argon to helium, double effect of improvement on the output of the steady state was observed. The increase of output in the plasma arc device was accompanied by an increase in the melting rate of the Ti sponge and the quality of the ingot surface was also improved. The plasma arc remelting of the new scrap titanium and the old scrap zirconium alloy could result in the fabrication of an ingot with high surface quality.