• Title/Summary/Keyword: Ti(C,N)

Search Result 1,292, Processing Time 0.037 seconds

DC-Pulse Plasma와 Thermal MOCVD방법으로 증착된 TiN 박막의 특성에 관한 연구

  • 박용균;이영섭;정수종;신희수;조동율;천희곤
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.27-27
    • /
    • 2000
  • TDEAT precursor를 이용하여 DC-Pulse Plasma MOCVD 방법과 Thermal MOCVD 방법으로 각각 TiN 박막을 증착하였다. 본 논문에서는 DC-Pulse Plasma MOCVD 방 법으로 증착된 TiN 박막과 Therrnal MOCVD 방법으로 증착된 TiN 박막의 전기적 특성에 관하여 비교 분석하였다. 동일한 조건 하에서 각각의 방법으로 증착된 박막은 4-point probe를 이용하여 면저항을 측정하였고, XRD를 이용하여 박막의 성장방향을 관찰하였으며, FE-SEM을 이용하여 박막의 두께와 단면 사진, 표면형상을 관찰하였으며, AES depth profile을 통해 두께에 따른 Ti, N, 잔류 C와 0의 함량을 분석하였으며, XPS를 통해 C의 결합형태를 파악하고자 하였다. 분석결과 DC-Pulse Plasma MOCVD 방법으로 증착된 TiN 박막이 Thermal MOCVD 방법으로 증착된 TiN 박막에 비해 전기적 특성은 매우 우수하였으며, 치밀한 구조의 박막을 가지는 것으로 나타났다. 또한, 잔류 C, O의 함량이 낮은 것으로 나타났다.

  • PDF

Characteristics of W-TiN Gate Electrode Depending on the Formation of TiN Thin Film (W-TiN 복층 전극 소자에서 TiN 박막 형성 조건에 따른 특성 분석)

  • 윤선필;노관종;양성우;노용한;김기수;장영철;이내응
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.189-193
    • /
    • 2001
  • We have characterized physical and electrical properties of W-TiN stacked gate electrode structure with TiN as a diffusion barrier of fluorine. As the $N_2/Ar$ gas ratio increased during sputter deposition, TiN thin films became N-rich, and the resistivity of the films increased. However, the resistivity of W-TiN stacked gate reduced as a result of the crystallization of tungsten with the increase of $N_2/Ar$ gas ratio. On the other hand, tungsten in W-TiN stacked gate structure have the (100)-oriented crystalline structure although TiN films were subjected to annealing at high temperature (600~$800^{\circ}C$). Leakage currents of W-TiN gate MOS capacitors were less than $10^{-7}\textrm{/Acm}^2$ and also were lowered by the order of 2 compared with those of pure W gate electrode.

  • PDF

Tribological Characteristics of TiC, TiN Coating for PVD Method with Automotive structural Materials (물리적 증착 방법에 의한 TiC, TiN코팅에 따른 자동차 구조용 재료의 트라이볼로지 특성)

  • Oh, Seong-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.432-436
    • /
    • 2007
  • We have studied on the tribological characteristics of Plasma Vapour Deposition(PVD) coating method in Automotive Structural Materials. Coating materials were deposited by the Titanium carbide(TiC) and Titanium nitride(TiN). An experimental process was established to determine the tribological characteristics of friction and wear behaviour with the variation of applied load, temperature and the time with the Falex friction and wear test machine. It was improved that when the surface modification of hard coatings(TiC, TiN) was deposited steel, the tribological characteristics become better. It is argued that it is improved because of excellence of the anti-wear, the extreme pressure properties and tile heat stability.

  • PDF

Wear characteristics of coated $Si_3N_4$-TiC ceramic tool (Coated $Si_3N_4$-TiC ceramic 공구의 마모 특성)

  • 김동원;권오관;이준근;천성순
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1988.06a
    • /
    • pp.43-48
    • /
    • 1988
  • 보호피막을 입히는 방법으로는 화학증착법과 물리증착법이 주로 사용되고 있다. 고온 분위기에서 기체 상태인 반응물의 화학반응을 통하여 원하는 물질을 증착시키는 화학증착법은 물리증착법에 비해 점착성(adhesion)이 우수하고, 보호피막층의 성분조절이 용이하며, 반응물이 기체상태이므로 대량생산이 용이하여 보호피막 증착법으로 많이 사용되고 있다. $Si_3N_4$-TiC ceramic 표면에 TiC, TiN 및 Ti(C, N) coating을 함으로써 얻을 수 잇는 장점들은 표면층의 경도를 증가시키며, steel과의 마찰계수의 감소 및 coating 층 자체가 고온에서 고체 윤활제로 작용하여 마찰열의 상당한 감소를 얻을 수 있으며, 또한 coating층 자체가 비교적 안정한 화합물로 피삭재내의 성분원소들에 대한 diffusion barrier로 작용되며, 내식성을 증가시킬 수 있다. 본 연구에서는 각 증착층의 미소경도, 열충격저항, steel과의 마찰계수를 측정하였으며, 최종적으로 절삭시험을 통하여 증착층들의 내마모성을 조사, 규명하였다.

  • PDF

Effects of Composition on the Wear Characteristics of Ti(C, N) Films (Ti(C, N) 피막의 내마모 특성에 대한 조성의 영향)

  • Go, Gyeong-Hyeon;An, Jae-Hwan;Bae, Jong-Su;Jeong, Hyeong-Sik
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.960-965
    • /
    • 1995
  • Hard Ti(C, N) layers of various compositions were coated on ASP30 tool steel employing a reactive HCD ion plating technique. The effect of film composition on the wear characteristics were investigated in lights of hardness, adhesion and wear mechanism. With an increase in the amount of nonmetallic component(N, C), the hardness of films increased, but the increase in carbon content resulted in poor adhesion. Within the concentration range of ([C+N]/Ti<1), these trends became mute clear than in the concentration below stoichiometry. Therefore, the wear resistance could be maximized when the film is deposited with the concentration of ([C+N]/Ti<1) for high microhardness and, at the same time, with the low carbon contents not to wear out in adhesive mode.

  • PDF

Minimization of Recombination Losses in 3D Nanostructured TiO2 Coated with Few Layered g-C3N4 for Extended Photo-response

  • Kang, Suhee;Pawar, Rajendra C.;Park, Tae Joon;Kim, Jin Geum;Ahn, Sung-Hoon;Lee, Caroline Sunyong
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.393-399
    • /
    • 2016
  • We have successfully fabricated 3D (3-dimensional) nanostructures of $TiO_2$ coated with a $g-C_3N_4$ layer via hydrothermal and sintering methods to enhance photoelectrochemical (PEC) performance. Due to the coupling of $TiO_2$ and $g-C_3N_4$, the nanostructures exhibited good performance as the higher conduction band of $g-C_3N_4$, which can be combined with $TiO_2$. To fabricate 3D nanostructures of $g-C_3N_4/TiO_2$, $TiO_2$ was first grown as a double layer structure on FTO (Fluorine-doped tin oxide) substrate at $150^{\circ}C$ for 3 h. After this, the $g-C_3N_4$ layer was coated on the $TiO_2$ film at $520^{\circ}C$ for 4 h. As-prepared samples were varied according to loading of melamine powder, with values of loading of 0.25 g, 0.5 g, 0.75 g, and 1 g. From SEM and TEM analysis, it was possible to clearly observe the 3D sample morphologies. From the PEC measurement, 0.5 g of $g-C_3N_4/TiO_2$ film was found to exhibit the highest current density of $0.12mA/cm^2$, along with a long-term stability of 5 h. Compared to the pristine $TiO_2$, and to the 0.25 g, 0.75 g, and 1 g $g-C_3N_4/TiO_2$ films, the 0.5 g of $g-C_3N_4/TiO_2$ sample was coated with a thin $g-C_3N_4$ layer that caused separation of the electrons and the holes; this led to a decreasing recombination. This unique structure can be used in photoelectrochemical applications.

Tool Geometry for Improving Tool-Life in Turning of STS 304 (STS 304의 선삭에서 공구수명 향상을 위한 공구형상)

  • 이재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.581-584
    • /
    • 2003
  • The austenitic STS 304 stainless steel was turned to clarify the effects of tool geometry on the tool wear. The wear of TiN-TiCN-TiC-TiAlN coated tungsten carbide tool was the smallest, exhibiting larger wear in the order of Si-Al-O-N ceramic, TiN coated tungsten carbide, TiN-TiCN-TiN coated tungsten carbide, TiC-TiN cermet and M20 tungsten carbide tools at the same cutting conditions. The S-type tool of M20 with large approach angle showed the longest tool life of all tools used in this tests due to preventing the groove wear of the side cutting edge. The wear of the S-type tool with the rake angle of 15$^{\circ}$became smaller than with that of -5$^{\circ}$, but the tool with the nose radius of 0.8mm did not perform much better with increasing the rake angle.

  • PDF

Tool-Wear Characteristics in Turning of STS 304 (STS 304 선삭시의 공구마멸 특성)

  • 이재우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.56-64
    • /
    • 2003
  • The effect of tool geometry on the tool wear in turning the austenitic stainless steel, STS 304 was investigated. The wear of TiN-TiCN-TiC-TiAlN coated tungsten carbide tool was the smallest, showing larger wear in the order of Si-Al-O-N ceramic, TiN coated tungsten carbide, TiN- TiCN- TiN coated tungsten carbide, TiC-TiN cermet and M20 tungsten carbide tools at the same cutting conditions. The S-type tool of M20 with the larger side cutting edge angle showed the smallest tool wear in all tests due to preventing the groove wear of the side cutting edge. The wear of the S-type tool with the rake angle of $15^{\circ}$ became smaller than with that of $-5^{\circ}$, but the tool with the nose radius of 0.8mm did not perform much better with increasing the rake angle.

Ti Prepared by ionized physical vapor deposition (I-PVD) and TiN prepared by metal-organic chemical vapor deposition(MOCVD) as underlayers of aluminum TiN (Al 박막의 underlayer로서의 Ionized Physical Vapor Deposition (I-PVD) Ti 또는 I-PVD Ti/Metal-Organic Chemical Vapor Deposition TiN)

  • 이원준;나사균
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.394-399
    • /
    • 2000
  • The effects of the type and thickness of underlayer on the crystallographic texture and the sheet resistance of aluminum thin film were studied. Ti and Ti/TiN were examined as the underlayer of aluminum. Ti and TiN were prepared by ionized physical vapor deposition (I-PVD) metalorganic chemical vapor deposition (MOCVD), respectively. The texture and the sheet resistance of metal thin film stacks were investigated at various thicknesses of Ti or TiN, and the sheet resistance was measured after annealing at $400^{\circ}C$ in an nitrogen ambient. For I-PVD Ti underlayer, the excellent texture of aluminum <111> was obtained even at top of 5 nm of Ti. However, the sheet resistance of the metal stack was greatly increased after annealing due to the interdiffusion and reaction of Al and Ti. MOCVD TiN between Ti and Al could suppress the Al-Ti reaction without severe degradation of aluminum <111> texture. Excellent texture of aluminum was obtained for the MOCVD TiN thinner than 4 nm.

  • PDF