• 제목/요약/키워드: Thyroid-disrupting chemical

검색결과 4건 처리시간 0.017초

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.

Distribution and Potential Toxicological Effects of 2,2',4,4'-tetrabromodiphenyl Ether (BDE-47) as a Endocrine Disrupting Chemical in Human and Animals

  • Jung, Eui-Man;Yang, Hyun;An, Beum-Soo;Lee, Geun-Shik;Hyun, Sang-Hwan;Choi, Kyung-Chul;Jeung, Eui-Bae
    • 한국수정란이식학회지
    • /
    • 제26권4호
    • /
    • pp.297-304
    • /
    • 2011
  • Polybrominated diphenyl ethers (PBDEs) are a class of "brominated" (bromine containing) man-made chemicals used as flame retardant additives in plastics, foams, and textiles. PBDEs are found in various environmental contaminants in air, soil, sediment, and water, and 209 individual forms (congeners) of PBDE exist. Among these, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is the dominant congener found in the environment. Exposure to BDE-47 is now worldwide, and levels of BDE-47 have been detected in the blood of animals, including humans. BDE-47 can adversely affect the developmental system in both humans and animals. BDEs have structural similarities to polychlorinated biphenyls and thyroid hormones. However, recent studies have shown that BDEs may act as hormonal disrupting chemicals with detrimental effects. Therefore, a reliable assessment of BDE-47 toxicological action is required to understand the detrimental impacts of BDE-47 on human health. In this review, we overview recent studies on the distribution and potential toxicological effects of BDE-47 in humans and animals.

서울 거주 산모의 초유 중 노닐페놀 분석을 통한 인체노출평가 (Exposure Monitoring of Nonylphenol in Preterm Breast milk in Seoulers)

  • 이빛나;김창성;박미정;한유석;이소정;양미희
    • Environmental Analysis Health and Toxicology
    • /
    • 제23권2호
    • /
    • pp.113-117
    • /
    • 2008
  • Biomonitoring of nonylphenol (NP), an endocrine disrupting chemical, is required in Korea to perform its proper regulation. Thus, we analyzed exposure levels of nonlyphenol (NP) in breast milk from the mothers who delivered babies within 10 days (N=325). We analyzed free and total forms of NP in breast milk with LC/MS/MS (LOD, 0.5 ppb). In addition, we obtained questionnaires concerning lifestyle from the subject. As results, ranges of total NP were ${\mu}g/L$ (median, $3.51{\pm}4.98{\mu}g/L$ vs. normal, N=281, $2.07{\pm}3.76{\mu}g/L$; p<0.05). In conclusion, we suggest that exposure monitoring of NP should be continuously performed, even though the risks of NP are not clear, yet.

피레스로이드계 살충제의 MCF7-BUS세포에 대한 에스트로겐 및 항에스트로겐 효과 (Estrogenic and Antiestrogenic Insecticides in MCF7-BUS Cell Line)

  • 오승민;정규혁
    • 약학회지
    • /
    • 제45권6호
    • /
    • pp.694-700
    • /
    • 2001
  • Synthetic pyrethroids are analysis of a natural chemical moiety, pyrethrin derived from the pyrethrum plant Chrysanthemum. The natural pyrethrin structure has been modified to be highly lipophilic and photostable, creating an effective pesticide and resulting in an increased presence in the environment. Worldwide, they are commonly used insecticides against ticks, mites, mosquitoes, and as treatment for human head lice and scabies. Therefore, human exposure to their compounds in extensive. Several studies on the effects of pyrethroids on thyroid hormone regulation, estrogen and androgen function have been reported and yet little has been done try assess their potential hormonal activities. Among humans, a pyrethroid compound was suggested to be the causal agent for gynecomastia in a group of Haitian men. The reports suggest that some pyrethroid compounds are capable of disrupting endocrine function. Therefore, we examined estrogenic/antiestrogenic potential of three pyrethroid insecticides, that is permethrin, allethrin and fenvalerate in human breast cancer cell and action mechanism mediated by the estrogen receptor. Fenvalerate showed weak estrogenic activity but aallethrin and permethrin showed no effect. In combination with high levels (10$^{-10}$ M, 10$^{-11}$ M) of 17$\beta$-estradiol and three synthetic pyrethroids inhibited cert proliferations in MCF7-BUS cell by 17$\beta$-estradiol. Whereas, fenvalerate increased cell proliferative activity at lower level of estradiol (10$^{-12}$ M, 10$^{-13}$ M). The relative affinities to the estrogen receptor were observed by allethrin and permethrin treatment, but not by fenvalerate. These results indicated that some of pyrethroid insecticides may modulate estrogen functions in human breast cancer cell. The action mechanisms of estrogen receptor mediated antiestrogenicity by allethrin and permethrin were postulated.

  • PDF