• Title/Summary/Keyword: Thyroid hormone receptor-${\alpha}$

Search Result 4, Processing Time 0.023 seconds

Retinoid X Receptor Isoforms $\alpha$ and $\beta$ Differentially Regulate 3,5,3’ -Triiodothyronine- induced Transcription

  • Rhee, Myung-chull
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.489-493
    • /
    • 1998
  • Various heterodimers of the thyroid hormone receptor (TR) with other nuclear hormone receptors confer a wide range of transcriptional activities on thyroid hormone response elements (TREs) in the presence of the thyroid hormone ($T_3$). The present study analyzed the potential roles of retinoid X receptor (RXR) isoforms $\alpha$ and $\beta$ in $T_3$-mediated transcription on a well characterized TRE, a direct repeat of AGGTCA separated by four nucleo-tides (DR4), using electrophoretic mobility shift assays and transient transfection in CV-1 cells. We demonstrated that RXR$\alpha$ supressed liganded $TR_{\alpha}$-induced transcription while $RXR_{\beta}$ did not although both $TR_{\alpha}/RXR_{\alpha}$ and $TR_{\alpha}/RXR_{\beta}$ heterodimers were the predominant forms bound to the TRE-DR4 in the presence of $T_3$. We further demonstrated using Scatchard analysis that the two heterodimers had similar affinities for the TRE-DR4. All these observations suggest that the TRE-DR4 accomodates different types of TR/RXR heterodimers for a more finely tuned transcriptional response to $T_3$.

  • PDF

Resistance to Thyroid Hormone Syndrome Mutation in THRB and THRA: A Review

  • Jung Eun Moon
    • Journal of Interdisciplinary Genomics
    • /
    • v.5 no.2
    • /
    • pp.32-34
    • /
    • 2023
  • Resistance to thyroid hormone syndrome (RTH) is a genetic disease caused by the mutation of either the thyroid hormone receptor-β (THRB) gene or the thyroid hormone receptor-α (THRA) gene. RTH caused by THRB mutations (RTH-β) is characterized by the target tissue's response to thyroid hormone, high levels of triiodothyronine and/or thyroxine, and inappropriate secretion of thyroid-stimulating hormone (TSH). THRA mutation is characterized by hypothyroidism that affects gastrointestinal, neurological, skeletal, and myocardial functions. Most patients do not require treatment, and some patients may benefit from medication therapy. These syndromes are characterized by decreased tissue sensitivity to thyroid hormones, generating various clinical manifestations. Thus, clinical changes of resistance to thyroid hormones must be recognized and differentiated, and an approach to the practice of personalized medicine through an interdisciplinary approach is needed.

Zebrafish (Danio rerio) Thyroid Hormone Receptor $\alpha$1 Counteracts Retinoic Acid-induced Transcription

  • Rhee, Myubg-Chull;Lee, Woonghee;Chang, Mi-Sook;Lee, Sang-Kyou
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.133-137
    • /
    • 1998
  • The present study aims to characterize a cDNA encoding zebrafish thyroid hormone receptor $\alpha{1}$ $(zTR\alpha{1)}$ in order to investigate its possible role in the early stage of embryonic development. A mobility shift assay showed that $zTR\alpha{1}$ overexpressed in COS7 cells specifically bound to thyroid hormone response element (TRE). In addition, the specific interaction of anti-rat $TR\alpha{1}$ antibodies with $zTR\alpha1$/TRE complexes demonstrated that the cDNA clone encoded zebrafish thyroid hormone receptor $\alpha{1}$. Transient cotransfection assays showed that $zTR\alpha{1}$ repressed the transcription which was induced by retinoic acid (RA), a well-characterized embryonic morphogen. These results suggest that zTRal may be involved in regulating the RA-induced gene transcription during early embryonic development.

  • PDF

Regulation of thyroxine release in the thyroid by protein kinase C (갑상선에서 protein kinase C에 의한 thyroxine 유리조절)

  • Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.6
    • /
    • pp.1073-1080
    • /
    • 1999
  • Previous studies suggested that the inhibition of thyroxine ($T_4$) release by ${\alpha}_1$-adrenoceptor and muscarinic receptor stimulation results in activated protein kinase C (PKC) from mouse and guinea pig thyroids. In the present study, the effect of carbachol, methoxamine, phorbol myristate acetate (PMA), and R59022 on the release of $T_4$ from the mouse, rat, and guinea pig thyroids was compared to clarify the role of PKC in the regulation of the release of $T_4$. The thyroids were incubated in the medium containing the test agents, samples of the medium were assayed for $T_4$ by EIA kits. Forskolin, an adenylate cyclase activator, chlorophenylthio-cAMP sodium, a membrane permeable analog of cAMP, and isobutyl-methylxanthine, a phosphodiesterase inhibitor, like TSH (thyroid stimulating hormone), enhaced the release of $T_4$ from the mouse, rat, and guinea pig thyroids. Methoxamine, an ${\alpha}_1$-adrenoceptor agonist, inhibited the TSH-stimulated release of $T_4$ in mouse, but not rat and guinea pig thyroids. In contrast, carbachol, a muscarinic receptor agonist, inhibited the release of $T_4$ in guinea pig, but not mouse and rat thyroids. These inhibition were reversed by prazosin, an ${\alpha}_1$-adrenoceptor antagonist or atropine, a muscarinic antagonist or $M_1$- and $M_3$-muscarinic antagonists, in mouse or guinea pig thyroids. In addition, staurosporine, a PKC inhibitor, reversed methoxamine or carbachol inhibition of TSH stimulation. Furthermore, PMA, a PKC activator, and R59022, a diacylglycerol (DAG) kinase inhibitor, inhibited the TSH-stimulated release of $T_4$ in mouse, rat, and guinea pig thyroids. These inhibition were blocked by staurosporine. These findings suggest that the activation of receptor or DAG inhibits TSH-stimulated $T_4$ release through a PKC-dependent mechanism in thyroid gland.

  • PDF