• Title/Summary/Keyword: Thrust Modeling

Search Result 103, Processing Time 0.03 seconds

A Study on Cooling Conditions of a Linear Motor used in an Exposer for the Manufacturing LCD (LCD 제조용 노광기에 사용되는 리니어 모터의 냉각조건에 대한 연구)

  • Yang, Hong Cheon;Lee, Young Nam;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.31-36
    • /
    • 2012
  • The high thrust of the linear motor in the exposer generates the high temperature heat by the friction and the electromagnetic forces on its coil. It can cause the thermal deformation and the accuracy of the equipment is finally decreased which has a bad effect on the productivity. In this research, the heat and flow on the linear motor of the exposer has been analyzed. The existing equipment is non-contact fluid refrigerant type. The numerical analysis data of the existing equipment have been acquired and the reliability of the data has been verified. The revised modeling for the next-generation is suggested for cooling the exposer effectively.

The Simulation of Constant Speed Control Characteristics for Linear Induction Motor using Matlab Simulink (Matlab Simulink를 이용한 선형 유도전동기의 속도제어특성)

  • Kim Seong Kyeol;Na Jong Duk;Cho Geum Bae;Baek Hyung Lae
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1223-1225
    • /
    • 2004
  • In difference with the rotary type electrical machinery, the linear induction motor(LIM) that generates the direct thrust directly, is widely used for the operation system of electrified railroad, elevation system, conveyer system, and so on. The operational principle of linear induction motor is constructively similar to the general rotary induction motor. It is difficult to realize the complicate linear induction motor which is applied SVPWM system, but widely used in vector motor control system or servo control system because of its high performance in current control. In this paper, we presented the dynamic characteristic analyzing methode, and calculated efficiently the end effect by using equivalent circuit methode in the operating linear induction motor control system for Maltlab simulink modeling.

  • PDF

Analysis of the Dynamic charactristics of Linear Induction Motor considering the variation of loads (부하변동을 고려한 선형유도전동기의 동특성 분석)

  • Chun, Sam-Suk;Park, Chan-Won;Lim, Byung-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1162-1164
    • /
    • 2005
  • A Linear Induction Motor that generates the direct thrust directly, is widely used for the operation system of electrified railroad, elevation system, conveyer system, and so on. There are two analysis methode of linear induction motor characteristics. One is the electrical magnetic analyzing, the other is analyzing equivalent circuit. The electrical magnetic analyzing methode has available advantages to consider the physical condition. The equivalent circuit analyzing methode has the elementary methode in the system of vector control and over shoot situation. In this paper, It is used the dynamic characteristic analyzing methode that can calculate efficiently the end effect by using equivalent circuit methode in the operating linear induction motor system modeling and doing simulation of output characteristics of vector controller.

  • PDF

The Hybrid Rocket Internal Ballistics with Two-phase Fluid Modeling for Self-pressurizing $N_2O$ II (자발가압 성질을 가진 아산화질소의 2상유체 모델링을 통한 하이브리드 로켓 내탄도 해석 II)

  • Rhee, Sun-Jae;Lee, Jung-Pyo;Kim, Hak-Chul;Moon, Keun-Hwan;Choi, Won-Jun;Jung, Sik-Hang;Sung, Hong-Gye;Moon, Hee-Jang;Kim, Jin-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.50-54
    • /
    • 2011
  • This paper presents a two-phase model for hybrid rocket internal ballistics design using $N_2O$ as oxidizer The two-phase model results are compared with data obtained from static firing test. Two-phase model is suitable for blow-down type with saturated compressible fluid as $N_2O$, presented the result by Part 1. HDPE as Fuel, and $N_2O$ as oxidizer were used during the static firing test. The combustor were designed for an average thrust of 30 kgf where oxidizer tank pressure in set to 50 bar. The numerical results of internal ballistic showed good agreements with static firing test results where thrust, oxidizer tank pressure and chamber pressure are compared.

  • PDF

Characteristics of Liquid Rocket Engine Simulation System Using Control Valve (제어밸브를 이용한 액체로켓엔진 모사시스뎀 특성)

  • Lee Joons-Youp;Jung Tae-Kyu;Han Sang-Yeop;Kim Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.74-84
    • /
    • 2005
  • This paper include the investigation of finding the system characteristics of facility by simulating open-type turbo-pump fed system, which has commercial control valves, using AMESIM (Advanced Modeling Environment Simulation) commercial software. After developing a flight-type control valve on the basis of the results, the system characteristics of facility for control and valve tests is estimated. Especially, one of purposes of this paper is to find PID value of each commercial control valve in the facility for system test. To find suitable control logic, PI and PID modes are also compared. This paper also introduces design parameters of valve and equipment for thrust control and TDS simulation, which are using control valves.

Optimization of Thruster Catalyst Beds using Catalytic Decomposition Modeling of Hydrogen Peroxide (과산화수소 촉매분해 모델링을 이용한 추력기 촉매대 최적설계)

  • Jung, Sangwoo;Choi, Sukmin;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.746-752
    • /
    • 2017
  • High test hydrogen peroxide has been widely developed as green propellant for thrusters. Hydrogen peroxide is decomposed in the catalyst bed to produce the thrust. Catalyst bed design optimization is considered through existing model for catalyst beds. To verify the model, static firing tests were conducted under various conditions using a 100 N scale $H_2O_2$ monopropellant thruster. Temperature and pressure estimations from the model were well correlated to the experimental data. The model is used to obtain optimal design parameters by analyzing the catalyst capacity and pressure drop data for various simulated conditions. Catalyst beds can be optimized from the analysis of the catalyst capacity and pressure drop correlation through catalyst bed modeling.

  • PDF

Flight Dynamics Mathematical Modeling of Quad Tilt Rotor UAM for Real-Time Simulation (쿼드 틸트 로터 UAM 실시간 비행 시뮬레이션을 위한 비행역학 수학적 모델링)

  • Hyunseo Kang;Nahyeon Roh;Do-young Kim;Min-jun Park
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.18-26
    • /
    • 2024
  • This paper describes the results of a study on Generic Quad Tilt Rotor UAM aircraft, focusing on nonlinear mathematical modeling and the development of real-time simulation software. In this research, we designed a configuration for a Generic Quad Tilt Rotor eVTOL UAM aircraft based on NASA's UAM mission requirements. We modeled the aerodynamics using a database, the prop-rotor dynamics with a thrust database, and included a ground reaction and atmospheric model in the flight model. We defined the control concept for various modes(helicopter mode, transition mode, and airplane mode), derived tilt angle corridors, and formulated flight control requirements. The resultant real-time flight simulation software not only performs trim analysis for Tilt Rotor UAM aircraft but also predicts handling qualities, optimizes tilt angle scheduling based on dynamic characteristics, designs and validates flight control laws for helicopter, transition, and airplane modes, and facilitates flight training through simulator integration.

A Study on Longitudinal Flight Dynamics of a QTW UAV (QTW 무인항공기의 종축 비행동역학에 관한 연구)

  • Jung, Ji In;Hong, Sung Tae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • A Quad Tilt Wing UAV is a new concept hybrid UAV having the advantages of both fixed-wing and rotary-wing aircraft. This paper presents longitudinal flight dynamic characteristics of a Quad Tilt Wing UAV. The designed Quad Tilt Wing UAV is a configuration of a tandem wing type aircraft with an actuating motor and propeller mounted at each wing. Momentum theory is used to calculate the thrust, and nonlinear modeling is performed considering lift and drag generated by slip stream effect of propellers. Also, Force and moment variation at each tilting angle is considered. Static trim on longitudinal axis is analyzed via numerical simulation. Componentwise force contribution was analyzed at each trim mode. Dynamic characteristics were evaluated through eigenvalue analysis for a linear model at each flight mode. It is verified that longitudinal dynamic characteristics are changing from unstable to stable state by continuous transition of dominant poles.

Modeling and Simulation of CCTF Fuel Supply System (연소기연소시험설비(CCTF) 연료공급시스템 해석)

  • Chung, Yong-Gahp;Lee, Kwang-Jin;Cho, Nam-Kyung;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.892-897
    • /
    • 2011
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility(CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The fuel supply system modeling using AMESim was performed based on the results of the detailed design, and the fuel supply characteristics was analyzed in this paper.

  • PDF

Modeling and Simulation of Combustion Chamber Test Facility Oxidizer Supply System (연소기 연소시험설비 산화제 공급시스템 해석)

  • Chun, Yonggahp;Cho, Namkyung;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.92-97
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The oxidizer supply system modeling using AMESim was performed based on the results of the detailed design, and the oxidizer supply characteristics was analyzed in this paper.