• Title/Summary/Keyword: Thrust Determination

Search Result 32, Processing Time 0.021 seconds

Verification of Periodical Calibration for Iso-center Positions using Quality Assurance System for Irradiation Equipment Position Established at PMRC

  • Yasuoka, Kiyoshi;Ishikawa, Satoko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.192-194
    • /
    • 2002
  • We present the results on the calibration of iso-center positions using the quality assurance system established at PMRC for determination of center position in X-ray and proton irradiation fields. Details on the system are presented in another presentation in this session. The equipment in the system is mounted on a patient treatment bed in each proton exposure room, G1 or G2. A center of a stainless ball on the equipment is set at a cross of laser markers located around the iso-center and fixed on the room and on the snout in the gantry. A proton beam or an X-ray beam is exposed onto the ball through a brass collimator of 100 mm ${\times}$ 100 mm and projected onto the imaging plate set at I cm behind the ball. On the axis perpendicular to the thrust axis of the gantry on the imaging plate, a distance between a center of the collimator image and a center of the ball image varies as a cosine function of gantry angles unless the ball is set on the iso-center. An amplitude of the cosine curve shows the distance between the ball and the iso-center, an offset the offset of the collimator, and a phase shift at a zero crossing point the ball direction viewed from the iso-center. We present the relation among the iso-center position, the laser maker position, and the center of proton and X-ray irradiation fields. Its stability and its reproducibility are discussed.

  • PDF

Analysis of Dual Combustion Ramjet Using Quasi 1D Model (준 1차원 모델을 적용한 이중연소 램제트 해석)

  • Choi, Jong Ho;Park, Ik Soo;Gil, Hyun Young;Hwang, Ki Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.81-88
    • /
    • 2013
  • The component based propulsion modeling and simulation of an dual ramjet engine using Taylor-Maccoll flow equation and quasi 1-D combustor model. The subsonic and supersonic intake were modeled with Taylor-Maccoll flow having $25^{\circ}$ cone angle, the gas generator which transfers a pre-combustion gas into supersonic combustor was developed using Lumped model, and the determination of the size of nozzle throat of a gas generator was described. A quasi 1-D model was applied to model a supersonic combustor and the variation of temperature and pressure inside combustor were presented. Furthermore, the thrust and specific impulse applying fuel regulation by pressure recovery ratio and equivalence ratio were derived.