• Title/Summary/Keyword: Thrust Control System

Search Result 380, Processing Time 0.027 seconds

Autopilot Design for Agile Missile with Aerodynamic Fin and Thrust Vecotring Control

  • Lee, Ho-Chul;Choi, Yong-Seok;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.525-530
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion which generates the nominal control input trajectories, and autopilot design using the time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Dynamic inversion can decide the amount of the deflection of each control effector, aerodynamic fin and thrust vectoring control, to extract the maximum performance by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. Nonlinear simulations demonstrates the dynamic inversion provides the effective nominal control input trajectories to achieve the angle of attack command, and time-varying control technique exhibits good robustness for a wide range of angle of attack.

  • PDF

Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control (공력 및 추력을 이용한 유도탄의 혼합제어기 설계(I))

  • 이호철;최용석;최재원;송택렬;송찬호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.122-130
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories, and autopilot design using time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Control allocation of this paper is capable of extracting the maximum performance from each control effector, aerodynamic fin and thrust vectoring control, by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulation.

A study on aerodynamic characteristics of jet-vane thrust vector control system enclosed by a shroud (Shroud를 포함한 제트베인의 공기역학적 특성 연구)

  • Park, Soon-Jong;Kim, Kyoung-Rean;Park, Jong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3203-3208
    • /
    • 2007
  • The performance study shows the result using two different methods which are used to control missile or aircraft. One is the Thrust Vector Control(TVC) method for the aviation of next generation and the other is the present effective Shroud Jet-vane System(SJVS) method for the satellite effector development. The research was done through the performance estimation using the numerical simulation analysis, the modelling, the performance measuring using the model, the investigation of the flow visualization and aerodynamic performance with the enforced power to the vane and the result comparison.

  • PDF

Pressure Guidance and Thrust Allocation Law of Solid DACS (고체 추진 DACS의 압력 유도 및 추력 분배기법)

  • Park, Iksoo;Hong, Seokhyun;Ki, Taeseok;Park, Jungwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.9-16
    • /
    • 2015
  • The control law for simultaneous pressure and thrust control of solid DACS(Divert Attitude Control System) is suggested. To regulate the two variables effectively, the control structure of sequential loop closer is applied to the system considering the physical characteristics of each variable and the weighted pseudo-inverse method is suggested to allocate effective command for indeterminate system. Also, the pressure guidance law for safe and high acceleration is applied to the homing stage to verify the effectiveness of the command distribution.

Mixed Control of Agile Missile with Aerodynamic fin and Side Thrust Control (유도탄의 유도명령 추종을 위한 혼합제어기 설계: 공력 및 측추력제어)

  • 최용석;이호철;송택렬;송찬호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.947-955
    • /
    • 2004
  • This paper is concerned with a mixed control with aerodynamic fin and side thrust control applied to an agile missile using a dynamic inversion and a time-varying control technique. The nonlinear dynamic inversion method with the weighting function allocates the desired control inputs(aerodynamic fin and side thrust control) to achieve a reference command, and the time-varying control technique plays the role to guarantee the robustness for the uncertainties. The proposed schemes are validated by nonlinear simulations with aerodynamic data.

Control of Pressure and Thrust for a Variable Thrust Solid Propulsion System Using Linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho;Kim, Dae-Seung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable for long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For the pressure control within the chamber, we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using the feedback linearization technique. Also we derive the equation of the thrust for an under-expanded one-dimensional nozzle and then design a proportional-intergral controller after linearizing the thrust model for an operating point. Finally, we demonstrate the performance of the controller through a numerical simulation.

A Design of Hybrid Type Linear Pulse Motor and Microstep Driver (하이브리드형 선형 펄스 모터와 마이크로스텝 드라이버 설계)

  • Kim, M.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.62-67
    • /
    • 2009
  • In this paper we designed a prototype hybrid type linear pulse motor (HLPM) with single side stator structure for low cost. The measurement system which can get the motor characteristics of the HLPM was suggested. The static and dynamic characteristics of the thrust force are measured analyzed. And the microstep drive method is adopted and tested to the drive of prototype HLPM. The thrust waveform is measured respectively to know the differences of the thrust waveform between the microstep drive method and rectangular wave. From the experimental results, it can be confirmed that the repetitive ripple of the thrust force of the prototype HLPM is reduced by taking the microstep drive method.

  • PDF

Performance Comparison of Three Different Types of Attitude Control Systems of the Quad-Rotor UAV to Perform Flip Maneuver

  • Lee, Byung-Yoon;Yoo, Dong-Wan;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • This paper addresses the performance of three different types of attitude control systems for the Quad-rotor UAV to perform the flip maneuver. For this purpose, Quad-rotor UAV's 6-DOF dynamic model is derived, and it was used for designing an attitude controller of the Quad-rotor UAV. Attitude controllers are designed by three different methods. One is the open-loop control system design, another is the PD control system design, and the last method is the sliding mode control system design. Performances of all controllers are tested by 6-DOF simulation. In case of the open-loop control system, control inputs are calculated by the quad-rotor dynamic model and thrust system model that are identified by the thrust test. The 6-DOF realtime simulation environment was constructed in order to verify the performances of attitude controllers.

Analysis of Dynamic Characteristics of Fluidic Thrust Vector Control for the Over-expanded Supersonic Jet (과팽창 초음속제트의 방향 제어를 위한 유체역학적 제어의 동특성 연구)

  • Heo, Jun-Young;Yoo, Kwang-Hee;Cho, Min-Kyung;Sung, Hong-Gye;Lee, Yeol;Jeon, Young-Jin;Cho, Seung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.123-127
    • /
    • 2009
  • The purpose of this research is to investigate the dynamic characteristics of fluidic thrust vector control using the co-flow injection. In previous research, both numerical and experimental approaches for steady state were conducted to investigate operation-parameters and detail flow structure of the fluidic thrust vector control system. Based upon the previous results, numerical unsteady calculation was conducted to analyze the dynamic characteristics of jet up- and down-ward vectoring so that the transition time and the pressure distribution along the wall, and so on were investigated.

  • PDF

Performance Analysis of SITVC System with Various Secondary Injection Conditions (이차분사노즐 작동 조건 변화에 따른 SITVC 성능해석)

  • Bae, Ji-Yeul;Song, Ji-Woon;Kim, Tae-Hwan;Cho, Hyung-Hee;Bae, Ju-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.116-121
    • /
    • 2011
  • Performance of Secondary Injection Thrust Vector Control system is investigated under various secondary injection operating conditions. 3-dimensional converging-diverging nozzle having 8 secondary injection nozzles is used in this numerical study. Total pressure of flow inside the nozzle is about 70bars, and total temperature set to 300K for cold flow simulation. Effect of secondary injection flow rate and injection nozzle configuration is considered in this research. Simulation is conducted with commercial CFD code Ansys Fluent v13. Spalart-Allmaras(1-equation)model is used for turbulence modeling with AUSM+ scheme. Various performance factors as Axial thrust, side force, system specific impulse ratio are considered and explained for system performance evaluation.

  • PDF