• 제목/요약/키워드: Thrust Augmentation

검색결과 11건 처리시간 0.019초

오리피스 형상에 따른 발사관 내 부가추력 특성 연구 (Analysis of the Thrust Augmentation in the Canister with Baseplate Orifices)

  • 윤진영;임범수
    • 한국군사과학기술학회지
    • /
    • 제14권6호
    • /
    • pp.1067-1072
    • /
    • 2011
  • If the flow of booster gas which is exhausted to the rear part of a canister is properly restricted in the canister of a hot-launch system, the resultant pressure built up in the canister provides additional force to accelerate the missile to a required launch velocity. These thrust augmentation performances can be controlled through the configuration design of baseplate orifices. In this paper, the simple technique to analyze the thrust augmentation performances of baseplate orifices is suggested and the thrust augmentation characteristics by its various configurations are compared. According to the initial displacement of a missile, the inner pressure of a canister is measured from scaled cold flow tests, and the discharge coefficient of baseplate orifices is calculated. Then the thrust augmentation in a canister is simulated by applying these discharge characteristics to the AMESIM software for launch dynamics.

Thrust augmentation through after-burning in scramjet nozzles

  • Candon, Michael J.;Ogawa, Hideaki;Dorrington, Graham E.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권2호
    • /
    • pp.183-198
    • /
    • 2015
  • Scramjets are a class of hypersonic airbreathing engine that are associated with realizing the technology required for economical, reliable access-to-space and high-speed atmospheric transport. After-burning augments the thrust produced by the scramjet nozzle and creates a more robust nozzle design. This paper presents a numerical study of three parameters and the effect that they have on thrust augmentation. These parameters include the injection pressure, injection angle and streamwise injection position. It is shown that significant levels of thrust augmentation are produced based upon contributions from increased pressure, mass flow and energy in the nozzle. Further understanding of the phenomenon by which thrust augmentation is being produced is provided in the form of a force contribution breakdown, analysis of the nozzle flowfields and finally the analysis of the surface pressure and shear stress distributions acting upon the nozzle wall.

축대칭 환형 이젝터 제트의 내부 유동과 추력특성 (INTERNAL FLOW PROPERTIES AND THRUST CHARACTERISTICS OF AXI-SYMMETRIC ANNULAR BELL TYPE EJECTOR-JET)

  • 박근홍;권세진
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.46-52
    • /
    • 2007
  • An experimental and numerical investigation of the ejector-jets focusing on its geometric parameters that effect on thrust performance was carried out. The area ratio of the primary nozzle that was tested in the present study was 2.17 and 3.18, while the ratio of the length to the diameter of the duct downstream the primary nozzle inlet had values of 3.41, 6.82, and 10.23. Internal flow properties of ejector-jet were estimated by comparison experiment data and CFD analysis for basic study of ejector-jet thrust performance. For examination of thrust performance, the thrust ratios increased with increase in L/D. Especially at AR=2.17, the maximum thrust augmentation was 33 percent for the shortest L/D. It is expected that the increase of mixing duct length of ejector-jet will be helpful in a thrust performance by improving mixing efficiency.

축대칭 환형 이젝터 제트의 내부 유동과 추력특성 (INTERNAL FLOW PROPERTIES AND THRUST CHARACTERISTICS OF AXI-SYMMETRIC ANNULAR BELL TYPE EJECTOR-JET)

  • 박근홍;권세진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.166-170
    • /
    • 2007
  • An experimental and numerical investigation of the ejector-jets focusing on its geometric parameters that effect on thrust performance was carried out. The area ratio of the primary nozzle that was tested in the present studywas 2.17 and 3.18, while the ratio of the length to the diameter of the duct downstream the primary nozzle inlet had values of 3.41, 6.82, and 10.23. Internal flow properties of ejector-jet were estimated by comparison experiment data and CFD analysis for basic study of ejector-jet thrust performance. For examination of thrust performance, the thrust ratios increased with increase in L/D. Especially at AR=2.17, the maximum thrust augmentation was 34 percent for the shortest L/D. It is expected that the increase of mixing duct length of ejector-jet will be helpful in a thrust performance by improving mixing efficiency.

  • PDF

2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (II) (Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(II))

  • 송봉하;고현;윤웅섭;이상길
    • 한국추진공학회지
    • /
    • 제5권1호
    • /
    • pp.18-25
    • /
    • 2001
  • 2차 가스 분사 추력벡터 제어 성능 해석을 위한 체계적인 수치계산을 수행하였다. 분사위치와, 노즐 팽창각이 압력비, 추력비, 비추력비 및 축추력 증대와 같은 전체 성능 파라미터에 미치는 2차 분사의 효과를 고찰하였다. 2차 제트 분사에 의한 복잡한 노즐 배기 유동에 대한 수치 해석은 Baldwin-Lomax 난류 모델을 포함하는 비정상 3차원 레이놀즈 평균 Navier-Stokes 방정식을 이용하여 수행하였고, 팽창 팽착반각이 $9.6^{\cire}$인 로켓 노즐에서의 2차 공기분사에 대해 적용, 실험값과 비교, 검증 하였다. 전체 성능 파라미터에 대한 결과로서 주 노즐의 하류에 2차 분사구를 위치시키는 것이 반사 충격파의 발생을 방지하며, 넓은 적용범위에 대하여 효율적이고 안정한 추력 방향제어에 적합한 것으로 나타났다.

  • PDF

선박(船舶)의 정수중(靜水中) 추진성능(推進性能) 해석(解析) 및 최적선형설계(最適船型設計)에의 응용(應用) (Development of a Method to Analyze Powering Performance of a Ship and its Application to Optimum Hull Form Design)

  • 양승일
    • 대한조선학회지
    • /
    • 제22권2호
    • /
    • pp.35-48
    • /
    • 1985
  • The present work develops a method of evaluating thrust deduction and wake for different loads of the propeller using the concerted application of the theoretical tools and experimental techniques. It also shows the applicability of the new method to the design of optimum hull form. Firstly, the problem of hull-propeller interaction was analyzed in terms of inviscid as well as viscous components of the thrust deduction and wake. The wavemaking resistance of a hull and propeller were mathematically represented by sources on the hull surface and sink on the propeller plane, respectively. The strength of sink was determined by utilizing the radial distributions of propeller load and nominal wake. The resistance increment due to a propeller and the axial perturbation flow induced by the hull in the propeller plane were calculated. Especially, the inviscid component of the thrust deduction was calculated by subtraction the wavemaking resistance of a bare hull, the wavemaking resistance of a free-running propeller and the augmentation of propeller resistance due to hull action from the wavemaking resistance of the hull with a propeller. The viscous components of the thrust deduction and wake were estimated as functions of propeller load which were established by the propeller load varying test after deduction the calculated inviscid components. Secondly, an analysis method of powering performance was developed based on the potential theory and the propeller load varying test. The hybrid method estimates the thrust deduction, wake and propeller open-water efficiency for different propeller load. This method can be utilized in the analysis of powering performance for the propeller load variation such as the added resistance due to hull surface roughness, the added resistance due to wind, etc. Finally, the hybrid method was applied to the optimum design of hull form. A series of afterbody shapes was obtained by systematically varying the waterplane and section shapes of a parent afterbody without changing the principal dimensions, block coefficient and prismatic coefficient. From the comparison of the predicted results such as wavemaking resistance, thrust deduction, wake and delivered power, an optimum hull form was obtained. The delivered power of the optimized hull form was reduced by 5.7% which was confirmed by model tests. Also the predicted delivered power by the hybrid method shows fairly good agreement with the test result. It is therefore considered that the new analysis method of powering performance can be utilized as a practical tool for the design of optimum hull form as for the analysis of powering performance for the propeller load variation in the preliminary design stage.

  • PDF

Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle

  • Debnath, Pinku;Pandey, K.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.187-202
    • /
    • 2020
  • The exhaust nozzle serves back pressure of Pulse detonation combustor, so combustion chamber gets sufficient pressure for propulsion. In this context recent researches are focused on influence of nozzle effect on single cycle detonation wave propagation and propulsion performance of PDE. The effects of various nozzles like convergent-divergent nozzle, convergent nozzle, divergent nozzle and without nozzle at exit section of detonation tubes were computationally investigated to seek the desired propulsion performance. Further the effect of divergent nozzle length and half angle on detonation wave structure was analyzed. The simulations have been done using Ansys 14 Fluent platform. The LES turbulence model was used to simulate the combustion wave reacting flows in combustor with standard wall function. From these numerical simulations among four acquaint nozzles the highest thrust augmentation could be attained in divergent nozzle geometry and detonation wave propagation velocity eventually reaches to 1830 m/s, which is near about C-J velocity. Smaller the divergent nozzle half angle has a significant effect on faster detonation wave propagation.

체공성능 향상을 위한 확장날개 틸트로터 무인기의 제어법칙설계 (Control Law Design for a Tilt-rotor Unmanned Aerial Vehicle with a Nacelle Mounted WE (Wing Extension))

  • 강영신;박범진;조암;유창선
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1103-1111
    • /
    • 2014
  • The results of control law design for a tilt-rotor unmanned aerial vehicle that has a nacelle mounted wing extension (WE) are presented in this paper. It consists of a control surface mixer, stability and control augmentation system (SCAS), hold mode for altitude / speed / heading, and a guidance mode for preprogram and point navigation which includes automatic take-off and landing. The conversion corridor and the control moments derivatives between the original tilt-rotor and its variant of the nacelle mounted WE were compared to show the effectiveness of the WE. The nacelle conversion of the original tilt-rotor starts when the airspeed is greater than 30 km/h but its WE variant starts at 0 km/h in order to reduce the drag caused by the high incidence angle of the WE. The stability margins of the inner loop are presented with the optimization approach. The outer loops for the hold mode are designed with trial and error methods with linear and nonlinear simulation. The main control parameter for altitude control of the helicopter mode is thrust command and it is transferred to the pitch attitude command in airplane mode. Otherwise, the control parameter for the speed of the helicopter mode is the pitch attitude command and it is transferred to the thrust command in airplane mode. Therefore the speed and altitude hold mode are coupled to each other and are engaged at the same time when an internal pilot engages any of the altitude or speed hold modes. The nonlinear simulation results of the guidance control for the preprogrammed mode and point navigation are also presented including automatic take-off and landing in order to prove the full control law.

초음속 페탈 이젝터 시스템에 관한 실험적 연구 (An Experimental Study on the Supersonic Petal Ejector System)

  • 이준희;김중배;최보규;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2145-2150
    • /
    • 2003
  • Ejector system is one of fluid machinery which can entrain the fluid in low pressure part and transport it to the higher pressure part. The ejector system has been widely used for the purpose of obtaining high-vacuum state, fluid transport, thrust augmentation, etc. It can transport a large capacity of fluid with relatively small device of no any moving parts, and thus seldom causes mechanical troubles. However, the conventional ejector system has been pointed out that its overall efficiency is quite low compared with other fluid machinery since it is derived by only the pure shear stresses. In the present study, 4, 6, and 8 lobed petal nozzles with a design Mach number of 1.7 are adopted as a primary nozzle to improve the ejector performance, and are compared with a conventional circular nozzle. The static pressures along the diffuser wall are measured to qualify the flow field inside the supersonic petal ejector system.

  • PDF

주파수 영역 기반 쿼드로터 무인기 운동 모델 식별 (Dynamic Model Identification of Quadrotor UAV based on Frequency-Domain Approach)

  • 정성구;김성욱;정연득;김응태
    • 한국항공운항학회지
    • /
    • 제23권4호
    • /
    • pp.22-29
    • /
    • 2015
  • Quadrotor is widely used in variable application nowadays. Due to its inherent unstable characteristics, control system to augment the stability is essential for quadrotor operation. To design control system and verify its performance through simulation, accurate dynamic model is required. Quadrotor dynamic model is simply compared with conventional rotorcraft such as helicopter. However, the accurate dynamic model of quadrotor is not easy to develop because of the highly correlated aerodynamic effect of each rotor. In this paper, quadrotor dynamic model is identified from the flight data using frequency domain approach. Flight test of quadrotor is performed in closed loop configuration with stability augmentation system included. Frequency sweep input is applied in each of lateral, longitudinal, yaw and heave axis separately. The bare dynamic model is identified from the flight data of quadrotor responses and thrust measurement through Pulse Width Modulation(PWM) data. The frequency responses of identified model match well with those of flight data, and time responses of identified model for doublet input in each axis are also shown to agree with flight data.